Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lekcija_1.doc
Скачиваний:
7
Добавлен:
13.11.2019
Размер:
292.86 Кб
Скачать

Достаточные признаки сходимости ряда

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

1. Признаки сравнения рядов с неотрицательными членами

Пусть даны два ряда и при un, vn 0.

Теорема (Первый признак сравнения). Если un vn при любом n, то из

сходимости ряда следует сходимость ряда , а из

расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через Sn и n частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех nn  M, где М – некоторое число. Но т.к. un vn, то Sn n то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд расходится, то расходится и ряд .

Пример. Исследовать на сходимость ряд

Т.к. , а ряд сходится (как убывающая геометрическая прогрессия), то ряд тоже сходится.

Теорема. (Второй признак сравнения) Если и существует

предел , где h – число, отличное от нуля, то ряды и

ведут одинаково в смысле сходимости.

2. Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд сходится, если же для всех достаточно больших n выполняется условие

то ряд расходится.

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел , то при  < 1 ряд сходится, а при

 > 1 – расходится. Если  = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

, ряд сходится.

Пример. Определить сходимость ряда

, ряд сходится.

3. Признаки Коши.

Радикальный признак Коши: Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

,

то ряд сходится,

если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

Следствие. Если существует предел , то при <1 ряд сходится, а при >1 ряд расходится.

Пример. Определить сходимость ряда .

, ряд сходится.

Пример. Определить сходимость ряда .

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

Интегральный признак Коши: Если (х) – непрерывная положительная функция, убывающая на промежутке [1;), то ряд (1) + (2) + …+ (n) + … = и несобственный интеграл одинаковы в смысле сходимости.

Пример. Ряд сходится при >1 и расходится 1 т.к. соответствующий несобственный интеграл сходится при >1 и расходится 1.

Следствие. Если f(x) и (х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]