Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции матэкономика 3курс-01.doc
Скачиваний:
5
Добавлен:
13.11.2019
Размер:
411.65 Кб
Скачать

Функциональная, статистическая и кореляционная зависимости

В естественных науках часто речь идет о функциональной зависимости (связи), когда каждому значению одной переменной соответствует вполне определенное значение другой (например, скорость свободного падения в вакууме в зависимости от времени Пример функциональной зависимости в экономике - выпуск продукции и ее потребление в условиях дефицита.).

В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество значений (определенное распределение) другой переменной. Такая зависимость получила название статистической. Например, объем продаж товара не определяется жестко его ценой. На него могут влиять такие случайные факторы, как погода, сезон, эффект ажиотажного спроса, массовая невыплата или выплата зарплаты. Среди этих случайных факторов имеются общие для обоих параметров (т.е. воздействующие и на X и на Y), что и приводит к статистической зависимости. Еще один пример: пусть при цене на лимоны в 7 руб. семья со средним достатком покупает в месяц от 10 до 15 лимонов, при цене в 13 руб. - от 5 до 10 шт., а при цене в 25 руб. - 1-3 шт. Т.е. изменение цены X изменяет возможное количество покупаемых цитрусовых Y.

Частным случаем статистической зависимости является зависимость в которой каждому возможному значению одной величины сопоставляется какая-либо числовая характеристика соответствующего распределения другой.

Статистическую зависимость называют корреляционной, если при изменении одной из величин изменяется среднее значение (математическое ожидание) другой. Например, с одинаковых по площади участков земли при равных количествах внесенных удобрений X снимают различный урожай Y, т.е. Y не является функцией от X. Это объясняется влиянием случайных факторов (осадки, температура воздуха, плодородие почвы и др.). Но как показывает опыт, средний урожай является функцией от количества удобрений, т.е. Y связан с X корреляционной зависимостью.

Корреляционная зависимость может быть представлена в виде:

(1)

В регрессионном анализе рассматриваются односторонняя зависимость случайной переменной Y от одной (или нескольких) неслучайной независимой переменной X. Такая зависимость может возникнуть, например, в случае, когда при каждом фиксированном значении X соответствующие значения Y подвержены случайному разбросу за счет действия ряда неконтролируемых факторов. Такая зависимость Y от X называется регрессионной и ее также можно представить в виде (1). При этом зависимую переменную Y называют также функцией отклика, объясняемой, выходной, результирующей, эндогенной переменной, результативным признаком, а независимую переменную X – объясняющей, входной, предсказывающей, предикторной, экзогенной переменной, фактором, регрессором, факторным признаком.

Уравнение (1) называется модельным уравнением регрессии (или просто уравнением регрессии), а функция (x) – модельной функцией регрессии (или просто функцией регрессии), а ее график – линией регрессии.

Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной Y при условии, что переменная X примет значение x, т.е. X=x. На практике такую информацию получить, как правило, не удается, так как обычно исследователь располагает лишь выборкой пар значений (xi, yi) ограниченного объема n. В этом случае речь может идти об оценке (приближенном выражении, аппроксимации) по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии:

(2)

Уравнение (2) называется выборочным уравнением регрессии.

Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) - линию регрессии.

По числу факторов различают одно-, двух- и многофакторные уравнения регрессии.

По характеру связи однофакторные уравнения регрессии подразделяются на:

а) линейные:

,

где X - экзогенная (независимая) переменная;

Y - эндогенная (зависимая, результативная) переменная;

a, b - параметры.

б) степенные:

в) показательные:

г) прочие.

Определение параметров линейного однофакторного уравнения регрессии

Пусть

x , х , . . . ,хn- совокупность значений независимого, факторного признака;

y , y . . . ,yn - совокупность соответствующих значений зависимого, результативного признака;

n - количество наблюдений.

Для нахождения уравнения регрессии вычисляются следующие величины:

  1. Средние значения

для экзогенной переменной.

для эндогенной переменной.

2. Отклонения от средних величин;

, .

  1. Величины дисперсии и среднего квадратичного отклонения

, .

Величины дисперсии и среднего квадратичного отклонения характеризуют разброс наблюдаемых значений вокруг среднего значения. Чем больше дисперсия, тем больше разброс.

  1. Вычисление корреляционного момента (коэффициента ковариации):

Корреляционный момент отражает характер взаимосвязи между x и y. Если , то взаимосвязь прямая. Если , то взаимосвязь обратная.

  1. Коэффициент корреляции вычисляется по формуле:

.

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы ( ). Коэффициент корреляции в квадрате ( ) называется коэффициентом детерминации.

Если , то вычисления продолжаются.

  1. Вычисления параметров регрессионного уравнения.

Коэффициент b находится по формуле:

После чего можно легко найти параметр a:

Коэффициенты a и b находятся методом наименьших квадратов, основная идея которого состоит в том, что за меру суммарной погрешности принимается сумма квадратов разности (остатков) между фактическими значениями результативного признака и его расчетными значениями , полученными при помощи уравнения регрессии

.

При этом величины остатков находятся по формуле:

, где

фактическое значение y; расчетное значение y.

Пример. Пусть у нас имеются статистические данные о доходах (X) и спросе (Y). Необходимо найти корреляционную зависимость между ними и определить параметры уравнения регрессии.

ГОД

n

ДОХОД

X

СПРОС

Y

1

10

6

2

12

8

3

14

8

4

16

10,3

5

18

10,5

6

20

13

Предположим, что между нашими величинами существует линейная зависимость.

Тогда расчеты лучше всего выполнить в Excel, используя статистические функции;

СРЗНАЧ - для вычисления средних значений;

ДИСП - для нахождения дисперсии;

СТАНДОТКЛОН - для определения среднего квадратичного отклонения;

КОРЕЛЛ - для вычисления коэффициента корреляции.

Корреляционный момент можно вычислить, найдя отклонения от средних значений для ряда X и ряда Y , затем при помощи функции СУММПРОИЗВ определить сумму их произведений, которую необходимо разделить на n-1.

Результаты вычислений можно свести в таблицу.