Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лек 2 физиология бактерий.doc
Скачиваний:
6
Добавлен:
14.11.2019
Размер:
182.78 Кб
Скачать

Механизм питания бактерий

Поступление в бактериальную клетку питательных веществ представляет собой сложный физико-химический процесс, которому способствует ряд факторов: разница в концентрации веществ, величина молекул, их растворимость в воде или липидах, рН среды, проницаемость клеточных мембран и т. д. В проникновении питательных веществ в клетку различают четыре возможных механизма.

  1. Наиболее простой способ — пассивная диффузия, при которой поступление вещества в клетку происходит из-за различия градиента концентрации (разницы концентрации по обе стороны цитоплазматической мембраны). Решающее значение имеет величина молекулы. Очевидно, в мембране есть участки, через которые и возможно проникновение веществ небольших размеров. Одним из таких соединений является вода.

Большинство питательных веществ попадает в бактериальную клетку против градиента концентрации, поэтому в таком процессе должны принимать участие ферменты и может расходоваться энергия.

  1. Одним из таких механизмов является облегченная диффузия, которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия — процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название п е р м е а з, так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.

  2. Третий возможный механизм транспорта веществ поучил название активного переноса. Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы. Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии. Расходуется аденозинтрифосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.

  3. при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов — активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы.

Синтезируемые в бактериальных клетках соединения выходят из них тремя путями:

  1. Фосфотрансферазная реакция. Происходит при фосфорилировании переносимой молекуды.

  2. Контрансляционная секреция. В этом случае синтезируемые молекулы должны иметь особую лидирующую последовательность аминокислот, чтобы прикрепиться к мембране и сформировать канал, через который молекулы белка смогут выйти в окружающую среду. Таким образом выходят из клетки соответствующих бактерий токсины столбняка, дифтерии и др. молекулы.

  3. Почкование мембраны. Молекулы, образующиеся в клетке, окружаются мембранным пузырьком, который отшнуровывается в окружающую среду.

Ферменты бактерий.

В бактериальной клетке происходят многочисленные реакции, как биосинтетические, направленные на синтез соединений, необходимых для организации структуры бактерии, так и производящие энергию, процессы ассимиляции и диссимиляции. Все эти реакции катализируются соответствующими ферментами. Ферменты являются белками и обладают специфичностью при распознавании соответствующего вещества и последующем превращении его. Большая часть ферментов связана с определенными структурами бактериальной клетки. Так, в цитоплазматической мембране находятся окислительно-восстановительные ферменты, которым принадлежит основная роль в дыхании клетки, ферменты, обеспечивающие доставку питательных веществ, и др. Ферменты, связанные с делением клетки, обнаруживаются в мезосомах, клеточной стенке, в месте образования перегородки.

У бактерий по характеру вызываемых ими превращений обнаруживаются следующие основные группы ферментов:

  • г и д р о л а з ы, вызывающие расщепление протеинов, углеводов, липидов путем присоединения молекул воды;

  • оксидоредуктазы, катализирующие окислительно-восстановительные реакции;

  • трансфера з ы, осуществляющие перенос отдельных атомов, от молекулы к молекуле;

  • л и а з ы, отщепляющие химические группы негидролитическим путем;

  • изомеразы, участвующие в углеводном обмене;

  • л и г а з ы, способствующие биосинтетическим реакциям клетки.

Ферменты бактерий классифицируются на экзоферменты и эндоферменты. Экзоферменты выделяются бактериальной клеткой в окружающую среду для внеклеточного переваривания. Этот процесс осуществляется с помощью гидролаз, которые расщепляют макромолекулы питательных веществ до простых соединений — глюкозы, аминокислот, жирных кислот. Такие соединения могут свободно проходить через оболочку клетки и с помощью пермеаз передаваться в цитоплазму клетки для участия в метаболизме, являясь источниками углерода и энергии. Некоторые экзоферменты выполняют защитную функцию, например, пенициллиназа, выделяемая многими бактериями, делает клетку недосягаемой для антибиотика — пенициллина.

Эндоферменты катализируют метаболические реакции, происходящие внутри клетки.

Ферменты бактерий классифицируются также на конститутивные и индуцибельные. Конститутивными называются такие ферменты, которые синтезируются клеткой независимо от наличия субстрата в среде, индуцибельные ферменты образуются бактериями только при наличии в среде соответствующего индуцирующего соединения, т. е. субстрата данного фермента. Например, в геноме кишечной палочки заложена способность разлагать лактозу, но только при наличии в среде лактозы клеткой синтезируется фермент, катализирующий ее гидролиз.

Известны также ферменты, которые получили название аллостерических. Кроме активного центра у них имеется регуляторный или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. allos - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению

( стерически ) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами. Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют. Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций.

Патогенные бактерии обладают наряду с ферментами обмена также ферментами агрессии, являющимися факторами вирулентности. К таким ферментам относятся

  • гиалуронидаза,

  • дезоксирибонуклеаза,

  • коллагеназа,

  • нейраминидаза, и др.

Гиалуронидаза стрептококков, например, расщепляет гиалуроновую кислоту в мембранах клеток соединительных тканей макроорганизма , что способствует распространению возбудителей и их токсинов в организме, обуславливая высокую инвазивность этих бактерий.

Плазмокоагулаза является главным фактором патогенности стафилококков, так как участвует в превращении протромбина в тромбин, который вызывает образование фибриногена, в результате чего каждая бактерия покрывается пленкой, предохраняющей ее от фагоцитоза.

Ферменты бактерий обладают высокой специфичностью, и именно это свойство широко используется при идентификации и определении видов микроорганизмов. Наибольшее значение имеет определение сахаролитических (ферментация сахаров) и протеолитических (разложение белков) свойств.

Микробные ферменты широко используются в медицине и промышленности. Так, получаемые из Aspergillus niger кислотоустойчивая амилаза и протеаза применяются как лекарства, способствующие пищеварению; с этой же целью используются липаза (из Rhizopus) и диастаза (из Aspergillus orizae). Для заживления ран и ожогов могут применяться стрептокиназа (из Streptococcus sp.) и коллагеназа (из CI. hislolyticum).

Споры

Одной из особенностей микроорганизмов является их способность к спорообразованию. Споры образуются при неблагоприятных условиях существования (высушивание, недостаток питательных веществ, изменение рН среды и т. д.), причем из одной клетки формируется только одна спора. Таким образом, образование спор не связано с процессом размножения, а является своеобразным приспособлением к переживанию в неблагоприятных условиях. По принятой номенклатуре спорообразующие аэробы носят название бацилл, а спорообразующие анаэробы — клостридии.

Процесс спорообразования проходит ряд стадий, в течение которых в определенном месте клетки цитоплазма, нуклеоид, рибосомы концентрируются, уплотняются, покрываются мембраной, а затем плотной, плохо проницаемой многослойной оболочкой, включающей кальциевые соли дипиколиновой кислоты, обусловливающей термоустойчивость спор. Споры длительное время могут сохраняться в покое, оставаясь жизнеспособными. Так, в почве споры патогенных микроорганизмов (возбудителя сибирской язвы, столбняка и др.) могут сохраняться десятками лет. При попадании в благоприятную среду споры очень быстро прорастают — из 1 споры возникает 1 бактериальная клетка, которая начинает размножаться.

Спорообразование — видовое свойство палочек, а форма и расположение формирующейся споры по отношению к вегетативной части клетки является дифференциально-диагностическим признаком. Форма спор может быть овальной или круглой, расположение центральное (возбудитель сибирской язвы), субтерминальное — ближе к концу палочки (возбудители газовой гангрены, ботулизма) и терминальное — на конце (возбудитель столбняка).

В зрелой споре различимы: центральный, плохо окрашиваемый участок (спороплазма), двухслойная ЦПМ и оболочка споры.

Спороплазма (протопласт споры) включает цитоплазму, бактериальную хромосому, системы белкового синтеза и некоторые другие (например, анаэробного энергообразования).

Оболочка споры двухслойная: пространство между слоями заполняют гликопептидные полимеры, сходные с пептидогликанами, образующие сетчатую структуру (кортекс), проявляющую высокую чувствительность к лизоциму. Внутренний слой (стенка споры) образован пептидогликанами, аналогичными таковым \ вегетирующей клетки. Внешний слой (собственно оболочка) образуют кератиноподобные белковые структуры с низкой проницаемостью.