Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ахметов и др. Технология и оборудование процессов переработки нефти и газа (2006)

.pdf
Скачиваний:
8356
Добавлен:
04.05.2014
Размер:
94.46 Mб
Скачать

среды в летний период работы. При низких температурах (зимой) можно отключать электродвигатель и вентилятор; при этом конденсация и охлаждение происходят естественной конвекцией.

Кроме этого интенсивность теплосъема можно регулировать, меняя расход прокачиваемого воздуха изменением угла наклона лопастей вентилятора. Для этого в аппаратах воздушного охлаждения предусмотрены механизм дистанционного поворота лопастей с ручным или пневматическим приводом и жалюзи, установленные над теплообменными секциями.Жалюзийныезаслонкиможно поворачивать вручную или автоматически с помощью пневмопривода.

В зимнее время возможна опасность переохлаждения конденсируемого в аппарате продукта. Во избежание этого под теплообменными секциями можно

устанавливать змеевиковый подогре- Рис. 2.47. Схемы аппаратов воздушного

охлаждения АВЗ:

ватель воздуха, выполненный также из а — шатровый; б — зигзагообразный оребренных труб.

Теплообменная секция аппарата воздушного охлаждения (рис. 2.48) состоитизчетырех,шестииливосьмирядовтруб3,размещенныхповершинамравностороннихтреугольниковвдвухтрубныхрешетках1.Трубы закреплены развальцовкой или развальцовкой со сваркой. Секции могут быть одно- и многоходовыми. В многоходовых секциях воздушного охлаждения,гдеобъемохлаждаемойсредыуменьшаетсяпомереегодвижения по трубам, последовательно по ходам уменьшается и число труб.

Для обеспечения жесткости трубного пучка секция укреплена металлическим каркасом 4. Однако при эксплуатации гайки на шпильках 2, соединяющих решетку с каркасом, должны быть отвинчены на расстояние, превышающее возможное температурное удлинение труб. В трубном пучке каждая труба может иметь индивидуальный прогиб. Для исключения контакта ребер верхнего ряда труб с ребрами труб нижнего ряда между соседними рядами в нескольких местах по длине трубы помещают дистанционные прокладки 5 шириной около 15 мм из алюминиевой ленты толщиной 2 мм.

121

Рис. 2.48. Теплообменная секция АВО

Крышки 6 крепят к трубным решеткам теплообменных секций при высоком давлении неразъемно или на шпильках. Если секция аппарата многоходовая, крышки снабжают перегородками, которые делят трубный пучок на ходы. Съемные крышки обычно выполняют литыми из стали.

Как указано, трубы в аппаратах воздушного охлаждения имеют оребрение по наружной поверхности, поскольку коэффициент теплоотдачи на наружной поверхности труб примерно на порядок меньше коэффициента для внутренней поверхности.

Ваппаратах воздушного охлаждения используют вентиляторы

сдиаметром колеса до 7 м. Колеса вентиляторов изготовляют сварными из алюминия или из стеклопласта, диффузор — из листовой стали толщиной 2мм.ХолодильникиАВГс трубамидлиной 8 м комплектуют двумя одинаковыми вентиляторами и электродвигателями (по одному вентилятору и двигателю на каждые 4 м длины труб).

Электродвигатели привода могут быть одно- и двухскоростными. При использовании двухскоростных электродвигателей с понижением температуры окружающей среды можно работать при меньшей частоте вращения вентилятора.

122

2.3.4. Теплообменные аппараты типа «труба в трубе»

Теплообменные аппараты «труба в трубе» используют главным образом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Также их используют для загрязненных коксообразующими веществами

имеханическими примесями теплоносителей, в которых обеспечивается хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости

итурбулентность потока уменьшают возможность отложения на стенках труб кокса или других образований.

По сравнению с кожухотрубчатыми теплообменники «труба в трубе» имеют меньшее гидравлическое сопротивление межтрубного пространства. Однако при равных теплообменных характеристиках они менее компактны и более металлоемки, чем кожухотрубчатые.

Теплообменники«труба в трубе» могут быть разборными или неразборными, одно- и многопоточными.

Однопоточный неразборный теплообменник (рис. 2.49) состоит из отдельныхзвеньев,вкаждый из которых входят трубы наружная (или кожуховая) 1 и внутренняя (или теплообменная)2.Наружная труба двумя приварными кольцами связана свнутреннейтрубой2взвено.Звенья,всвоюочередь,

собраны в вертикальный ряд и составляют тепло-

Рис. 2.49. Теплообменник типа «труба в трубе»:

а — общий вид; б — вариант жесткого крепления труб; в — вариант крепления труб с компенсирующим устройством

123

обменную секцию. При этом внутренние трубы соединены между собой коленами 3, а наружные — штуцерами 4 на фланцах или сваркой. Звенья закреплены скобами на металлическом каркасе 5.

Нетрудно видеть, что неразборные теплообменники являются конструкцией жесткого типа, поэтому при разности температур более 70°С их не используют. При большей разности температур труб, а также при необходимости механической очистки межтрубного пространства применяюттеплообменникискомпенсирующимустройствомнанаружной трубе. В этом случае кольцевую щель между трубами с одной стороны наглухо заваривают, а с другой — уплотняют сальником 6.

Однопоточные неразборные теплообменники изготовляют из труб длиной 3…12 м с диаметром внутренних труб 25…159 мм и наружных соответственно 48… 219 мм на условное давление для наружных труб до 6,4 МПа и для внутренних до 16 МПа.

В разборных конструкциях теплообменников обеспечивается компенсация деформаций теплообменных труб. На рис. 2.50 показана конструкция разборного многопоточного теплообменника «труба в трубе», конструктивно напоминающего кожухотрубчатый теплообменник типа ТУ.

Аппарат состоит из кожуховых труб 5, развальцованных в двух трубных решетках: средней 4 и правой 7. Внутри кожуховых труб размещены теплообменные трубы 6, один конец которых жестко связан с левой трубной решеткой 2, а другой — может перемещаться. Свободные концы теплообменных труб попарно соединены коленами 8 и закрыты камерой 9. Для распределения потока теплоносителя по теплообменным трубам служит распределительная камера 1, а для распределения теплоносителя в межтрубном пространстве — распределительная камера 3. Пластинами 11 кожуховые трубы жестко связаны с опорами 10.

Теплообменник имеет два хода по внутренним трубам и два по наружным. Узлы соединения теплообменных труб с трубной решеткой (узел I) и с коленами (узел II) уплотнены за счет прижима и деформации полушаровых ниппелей в конических гнездах.

Эти аппараты могут работать с загрязненными теплоносителями, так как внутреннюю поверхность теплообменных труб можно подвергать механической очистке. Поскольку возможность температурных удлинений кожуховых труб из-за жесткого соединения их с опорами ограниченна, перепад температур входа и выхода среды, текущей по кольцевому зазору, не должен превышать 150°С.

124

Рис. 2.51. Схема однопоточного погружного змеевикового конденсатора-холодильника:
I — пары нефтепродукта; II — охлажденный нефтепродукт; III — холодная вода; IV — нагретая вода

Рис. 2.50. Разборный двухпоточный теплообменник типа «труба в трубе»

2.3.5. Погружные аппараты

Специфическойособенностьюаппаратовэтоготипаявляетсяналичие емкости-ящика, в которую погружены теплообменные трубы. В ящике находится охлаждающая среда, например вода. Аппараты этого типа ис- пользуютвкачествехолодильниковиликонденсаторов-холодильников.

Различают змеевиковые и секционные аппараты. Принципиальное устройство однопоточного погружного конденсатора-холодильника показано на рис. 2.51. Теплообменная поверхность состоит из труб, соединенных при помощи сварки или на фланцах; переход из одной трубы

вдругую осуществлен при помощи двойников. Охлаждаемый поток последовательно проходит трубы, расположенные

вданномгоризонтальном ряду, после чего перехо-

дит в трубы следующего ряда и т.д.

125

Рис. 2.52. Схема коллекторного погружного конденсатора-холодильника:
I— пары нефтепродукта; II— охлажденный нефтепродукт; III — холодная вода; IV — нагретая вода

При большом расходе охлаждающегося потока для уменьшения гидравлического сопротивления применяют коллекторные змеевиковые холодильники (рис.2.52),вкоторыхохлаждаемый поток при помощи специального коллектора разбивается на несколько параллельных потоков. Меньшее гидравлическое сопротивление коллектор-

ного аппарата по сравнению с однопоточным достигается за счет снижения скорости потока и длины пути.

В случае использования подобного аппарата в качестве конденсато- ра-холодильника, когда вследствие частичной илиполной конденсации объем потока резко уменьшается, можно применять коллекторные погружные аппараты с переменным числом потоков. В начале аппарата, гдедвижутсявосновномпары,объемкоторыхзначителен,числопараллельных потоков может быть более высоким, чем в той части аппарата, гдезавершенаконденсацияпаровипроисходитохлаждениеконденсата. Такое устройство полезно для повышения теплового эффекта аппарата, так как при сохранении первоначального числа потоков по всему их пути скорость движения конденсата в конечной части аппарата может оказаться небольшой, а следовательно, коэффициент теплопередачи в этой части аппарата будет низким.

Следует иметь в виду, что неправильный выбор места сокращения числа потоков по пути конденсирующейся среды может привести к повышению гидравлических сопротивлений, как это имело место на некоторых действующих установках.

К недостаткам аппаратов подобного типа относится их громоздкость и повышенный расход металла. Кроме того, в ящике свободное сечение для прохода воды велико, вследствие чего скорость движения воды мала и относительно малы коэффициенты теплоотдачи от стенок змеевика к воде.

Такие аппараты используются на ряде действующих нефтеперерабатывающих заводов и при строительстве новых установок, как правило, не применяют.

126

2.3.6. Оросительные аппараты

Аппараты этого типа применяются в качестве холодильников и конденсаторов. Они представляют собой змеевик, состоящий из соединенных двойниками труб, которые расположены горизонтальными и вертикальными рядами.

Чащевсегоэтоколлекторные

 

змеевики (рис. 2.53). В верхней

 

части аппарата имеется распре-

Рис. 2.53. Схема оросительного коллекторного

делительное приспособление

конденсатора-холодильника:

для орошения наружной по-

I — охлаждаемый нефтепродукт; II — охлажденный

нефтепродукт; III — холодная вода; IV — нагретая

верхностизмеевиковводой.По-

вода

добноераспределительноеустройствовыполняетсяввиделибожелобов, либо специальных распылителей.

Вследствие высокого значения скрытой теплоты испарения воды даже незначительное ее испарение сопровождается отводом большого количества тепла.

Опыт работы оросительных конденсаторов и холодильников показывает, что около 50% тепла отводится испаряющейся водой. Таким образом, в оросительном холодильнике и конденсаторе расход воды примерно в два раза меньше, чем в обычном водяном холодильнике. К недостаткам таких аппаратов относится их громоздкость, интенсивная коррозия наружной поверхности труб вследствие воздействия кислорода воздуха и отложение накипи на поверхности труб, особенно усиливающееся при высокой температуре охлаждаемого потока, труд-

ность эксплуатации в зимних условиях.

2.3.7. Пластинчатые теплообменники

Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные).

Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро,

127

очистка теплообменных поверхностей требует незначительных затрат труда. Пластины полуразборных теплообменников попарно сварены, и доступ к поверхности теплообмена возможен только со стороны хода одной из рабочих сред. Пластины неразборных теплообменников сварены в блоки, соединенные на прокладках в общий пакет.

Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518. Их изготовляют с поверхностью теплообмена от 2 до 600м2 взависимостиоттипоразмерапластин;этитеплообменникииспользуют при давлении до 1,6МПа и температуре рабочих сред от –30 до +180°С для теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.

Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.

Разборные пластинчатые теплообменники изготовляют в пяти исполнениях, в том числе на консольной раме (исполнение 1), на двухопорной раме (исполнение 2), на трехопорной раме (исполнение 3).

Разборный пластинчатый теплообменник на двухопорной раме (исполнение 2) показан на рисунке 2.54. Аппарат состоит из ряда теплообменных пластин 4, размещенных на верхней и нижней горизонтальных штангах3.Концыштангзакрепленывнеподвижнойплите2инастойке7. Нажимной плитой 11 и винтом 8 пластины сжимаются, образуя теплообменную секцию.

Рис. 2.54. Разборный пластинчатый теплообменник (исполнение 2):

1, 9, 10 и 12 — штуцера; 2 — неподвижная плита; 3 — штанга; 4 — теплообменная пластина; 5 и 6 — прокладки; 7 — стойка; 8 — винт; 11 — нажимная плита; а, б, в и г — проходные отверстия

128

Теплообменные пластины имеют четыре проходных отверстия (а, б, в, г), которые образуют две изолированные одна от другой системы каналов. Для уплотнения пластин и каналов имеются резиновые прокладки. Прокладка 6 уложена в паз по контуру пластины и охватывает два отверстия на пластине, через которые происходят приток и вывод теплоносителя в канал между смежными пластинами, а прокладки 5 герметизируют два других отверстия на пластине. Для ввода теплоносителей в аппарат и их вывода предназначены штуцера 1, 9, 10, 12, расположенные на неподвижной и подвижной плитах.

Показанный на рис. 2.55 теплообменник на трехопорной раме (исполнение 3) состоит из неподвижной плиты 3, в которой закреплены верхняя 2 и нижняя 1 горизонтальные штанги. На штангах размещены теплообменные пластины 4 и подвижные плиты 5. Для сжатия пакета пластин предназначены стяжки 6.

Рис. 2.55. Пластинчатый теплообменник (исполнение 3):

1 и 2 — нижняя и верхняя штанги; 3 — неподвижная плита; 4 — теплообменные пластины; 5 — подвижные плиты; 6 — стяжки

В изображенном на рис. 2.56 теплообменнике пластины скомпонованы в два симметричных пакета — каждый для одного из теплоносителей.

Рис. 2.56. Схема компоновки пластинчатого теплообменника в два симметричных пакета

129

Рис. 2.57. Несимметричная схема компоновки пластин

Если расходы теплоносителей значительно различаются, то для поддержания постоянного гидравлического сопротивления каналов применяют несимметричные схемы компоновки пластин; при этом число

каналов и пакетов для каждого теплоносителя неодинаково. Примером может служить схема компоновки теплообменника, показанная на рис. 2.57.

Для конденсации паров из смеси с неконденсирующимися газами используютсхемукомпоновки (рис.2.58а).Сконденсировавшаясяфаза IV выделяется из парогазовой смеси II в каналах вне первого пакета

ивыводится из аппарата, а несконденсировавшиеся газы I попадают в каналы а и б второго пакета, охлаждаются и выводятся из аппарата. Охлаждающая фаза III (вода) движется по каналам одного пакета. Такие конденсаторы парогазовых смесей работают с более высоким коэффициентом теплоотдачи, чем стандартные кожухотрубчатые аппараты.

При соответствующей компоновке можно получить многосекционный аппарат, в котором теплообмен между одним теплоносителем

идвумя другими осуществляется в соответствующих зонах(рис. 2.58б).

Рис. 2.58. Схемы специальных пластинчатых аппаратов:

а — конденсатор; б — теплообменник для трех теплоносителей

Теплообменные пластины различаются расположением в них отверстий для теплоносителей на пластины с диагональным (рис. 2.59а)

иодносторонним (рис. 2.59б) расположением отверстий. И те, и другие выполняют левыми и правыми. Благодаря чередованию в пакете левых

иправых пластин образуются две изолированные системы каналов.

130