Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение.doc
Скачиваний:
130
Добавлен:
14.02.2015
Размер:
4.55 Mб
Скачать

10. Математический маятник.

Математическим маятником называется идеализированная система,

с

остоящая из материальной точки массойт, подвешенной на невесомой нерастяжимой нити длинной l, и колеблющейся под действием силы тяжести без трения.

Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой цлинной нити.

При малых углах отклонения а можно считать: x.

Возвращающая сила:

Уравнение движения:

или

Следовательно, движение математического маятника описывается дифференциальным уравнением гармонических колебаний, то есть происходит по закону х= A·cost + φ) с частотой и периодом, соответственно:

11 .Физический маятник.

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса, не проходящей через центр масс тела.

Если физический маятник отклонен из положения равновесия на некоторый угол а, то момент возвращающей силы

С другой стороны, при малых углах

где Jмомент инерции маятника относительно оси, проходящей через точку подвеса О,

l - расстояние между точкой подвеса и центром масс С маятника,

—возвращающая сила (со знаком минус, поскольку она всегда направленная противоположно направлению увеличения a).

Следовательно: , или

Таким образом, при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой и периодом:

где длина — называется приведенной длиной физическогоml маятника.

Приведенная длина физического маятника — это длина такого математического маятника, который имеет такой же период колебаний, что и данный физический маятник.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника.

Математический маятник можно представить как частный (предельный) случай физического маятника, вся масса которого сосредоточена в его центре

масс. При этом J = ml2, следовательно .

12.Сложение гармонических колебаний.

Если система одновременно участвует в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона,

о

писывающего результирующий колебательный

процесс.

Для сложения колебаний х1 и х2 , используем метод вращающегося вектора амплитуды (метод векторных диаграмм).

Так как векторы А1, и А2 вращаются с одинаковой угловой скоростью ω, то разность фаз между ними остается постоянной. Уравнение результирующего колебания будет

где амплитуда А и начальная фаза φ задаются соотношениями:

где

Сумма двух гармонических колебаний одного направления и одинаковой частоты есть гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания.

Амплитуда результирующего колебания зависит от разности фаз складываемых колебаний:

13. Биения.

Биениями называются периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами.

Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω <<ω. Путь для простоты начало отсчета выбрано так, чтобы начальные фазы обоих колебаний были равны нулю:

, Результирующее колебание будет иметь вид:

— гармоническое колебание с частотой ω, амплитуда которого изменяется по закону с частотой (частота биений вдвое больше частоты изменения косинуса, поскольку берется по модулю).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]