Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабы. светотехника.doc
Скачиваний:
43
Добавлен:
14.02.2015
Размер:
9.15 Mб
Скачать
  1. Готовность к самостоятельной, индивидуальной работе, принятию решений в рамках своей профессиональной компетенции (ок-7);

  2. Способность исследовать технические средства для измерения основных параметров электроэнергетических и электротехнических объектов и систем и проходящих в них процессов (пк-18);

  3. Способность выполнять экспериментальные исследования по заданной методике, обрабатывать результаты экспериментов (пк-44)

Краткие теоретические сведения.

Энергосберегающая лампа (ЭСЛ) - представляют собой разновидность газоразрядных ламп низкого давления, а именно компактных люминесцентных ламп (КЛЛ). Но энергосберегающие лампы имеют существенное отличие от традиционных КЛЛ, это встроенное электронное пускорегулирующие устройство (балласт).

Энергосберегающие лампы состоят из нескольких основных частей:

– колба;

– корпус;

– цоколь;

– балласт.

Цоколь энергосберегающей лампы может быть выполнен из металлизированного пластика, но чаще всего его изготавливают из меди и ее сплавов.

Принцип действия:

Колба энергосберегающей лампы представляет собой запаянную с 2 сторон трубку, заполненную парами ртути и аргона. Изнутри поверхность трубки покрыта слоем люминофора. В двух противоположных концах трубки расположены электроды.

Рисунок 3.4 – Разновидности колбы энергосберегающей лампы

.

Рисунок 3.5 – Принцип работы энергосберегающей лампы

Электроды энергосберегающей лампы представляют собой тройную спираль, покрытую оксидным слоем. Именно этот слой придает электродам их свойства создавать поток электронов (термоэлектродная эмиссия).

Чаще всего в энергосберегающих лампах применяются трехполосные люминофоры – это создает оптимальное соотношение хорошей цветопередачи и хорошей световой отдачи. Реже, для улучшения цветопередачи применяют пятиполосные люминофоры, т.к. это приводит к значительному увеличению стоимости лампы.

При подачи напряжения на электроды, через них начинает течь ток прогрева. Этот ток разогревает электроды до начала термоэлектродной эмиссии. При достижении определенной температуры поверхности, электрод начинает испускать поток электронов. При этом электрод, который испускает электроны, называется катодом, а электрод, который принимает анодом. Электроны, сталкиваясь с атомами ртути, вызывают ультрафиолетовое излучение (УФ-излучение), которое, попадая на люминофор, преобразовывается в видимый свет. Процесс столкновения потока электронов с атомами ртути называется ударной ионизацией. Электроны сталкиваясь с атомами ртути выбивают с их орбиты крайний электрон, превращая молекулу ртути в тяжелый ион. Если электроны движутся встречно электрическому полю, вектор которого направлен от анода к катоду, ионы двигаются по направлению вектора электрического поля. Т.о. как только электрод перешел в режим катода его начинают бомбардировать тяжелые ионы ртути, разрушая оксидный слой. Частицы оксидного слоя вступают в реакцию с газом, которым заполнена колба, сгорают и оседают на колбе вблизи электрода. Именно по этому нельзя использовать постоянное напряжение для питания КЛЛ, т.к. один электрод будет всегда анодом, а другой катодом, а значит последний будет разрушаться в два раза быстрее. Оксидный слой значительно снижает сопротивление электрода, а значит при его разрушении сопротивление электрода растет. Разрушение электродов также увеличивает износ элементов балласта.

Визуально конечная стадия процесса разрушения электродов выглядит так. Энергоберегающая ампа запускается с сильно заметным мерцанием. Световой поток заметно увеличивается. В течение незначительного времени энергосберегающая лампа выходит из строя.

В процессе работы в колбе происходит достаточно интенсивное, хаотичное движение электронов и ионов. Поэтому слой люминофора тоже подвержен разрушению и с течением времени световой поток лампы снижается. Нормой считается падение светового потока не более чем на 20% за 2000ч.

Из-за того что применяют трехполосный люминофор, свет который излучают энергосберегающие лампы имеет, так называемый, линейчатый спектр. Лампа накаливания имеет сплошной спектр (именно поэтому многие считают спектр ламп накаливания более приятным для глаз, чем спектр энергосберегающих ламп), но с полным отсутствием части синей области спектра и сильным смещением в красную область спектра.

В колбе применяются пары ртути, а ртуть является очень токсичным веществом. Но с другой стороны, ртути в колбе содержится крайне мало (не более 3мг, что в сотни раз меньше чем в бытовом градуснике).

Газ внутри колбы находится под очень низким давлением и незначительное изменение температуры окружающей среды приводит к изменению давления внутри колбы и как следствие к снижению светового потока. Для уменьшения степени влияния температуры окружающей среды, некоторые производители применяют вместо ртути амальгаму (соединение ртути с металлом), она делает световой поток более стабильным.

Пускорегулирующий аппарат или балласт это светотехническое изделие, с помощью которого осуществляется питание газоразрядных ламп от электрической сети, обеспечивающее необходимые режимы зажигания, разогрева и работы газоразрядных ламп.

Рисунок 3.6 – Схема пускорегулирующего аппарата (балласта)

Основные функциональные элементы балласта:

– предохранитель;

– выпрямитель;

– помехозащитный фильтр;

– ВЧ-генератор;

– пусковой контур;

– РТС;

– емкостной фильтр питающей сети.

Балласт представляет собой достаточно простое электронное устройство, построенное на активных элементах, принцип действия которого описан ниже.

Основным элементом электронного балласта является ВЧ-генератор, а точнее блокинг-генератор с трансформаторной положительной обратной связью. Основным элементом генератора являются два транзистора выполняющие функцию ВЧ-ключей. Правильный выбор транзисторов определяет надежность и срок службы генератора. Так например для энергосберегающих ламп мощности 1-9Вт рекомендуется использовать транзисторы серии 13001 ТО-92, для 11Вт – серии 13002 ТО-92, для 15-20Вт – серии 13003 ТО-126, для 25-40Вт – серии 13005 ТО-220, для 40-65Вт – серии 13007 ТО-200, для 85ВТ – серии 13009 ТО-220. Неправильный выбор транзисторов приводит к их перегреву и преждевременному выходу из строя.

Запускается ВЧ-генератор с помощью схем запуска на динисторе или с помощью добавления в схему запускающего электролитического конденсатора. Стоит отметить, что применение схемы запуска на динисторе значительно повышает надежность балласта, но приводит к увеличению его стоимости. Схема запуска на электролитическом конденсаторе является наименее надежной (т.к. срок службы электролита ограничен количеством циклов заряда/разряда) и устаревшей, в такой ситуации спасает применение высококачественных электролитов.

Основное назначение генератора – это преобразование постоянного напряжения в переменное напряжение 320В 50КГц (значения напряжения и частоты зависят от производителя, мощности лампы и конструкции балласта). Такое напряжение снижает износ электродов и устраняет пульсации светового потока (стробоскопический эффект).

Постоянное напряжение поступает на вход генератора с двухполупериодного выпрямителя, реализованного на 4 диодах. После выпрямителя, форма постоянного напряжения далека от идеальной и имеет значительные пульсации. Для уменьшения этих пульсаций применяют емкостной фильтр в виде электролита. Важен правильный выбор емкости этого электролита. Чем выше его емкость, тем лучше он сглаживает пульсации, но тем больше вероятность мерцания лампы при работе с выключателем с подсветкой. Чем меньше емкость, тем хуже он сглаживает пульсации и тем меньше вероятность мерцания при работе с выключателем с подсветкой. Так, например для ЭСЛ мощностью 20Вт, оптимальной является емкость электролита 4,7мкФ. Стоит сказать несколько слов о том, почему происходит мерцание при работе с выключателем с подсветкой. В выключенном состоянии через выключатель течет небольшой ток утечки. Этот ток будет заряжать электролит емкостного фильтра примерно до 30В, как только напряжение на электролите превысит это значение, произойдет срабатывания генератора и кратковременная вспышка лампы.

Так как генератор вырабатывает ВЧ-напряжение (50КГц), то необходимо исключить вероятность попадания ВЧ-помех в питающую сеть. Для этого применяется помехозащитный фильтр. Он состоит из катушки индуктивности и конденсатора.

Напряжение с ВЧ-генератора, через пусковой контур (ПК) поступает на выводы электродов.

Рисунок 3.7 – Схема пускового контура

ПК необходим для создания высокого напряжения запуска лампы. Но подавать напряжение на плохо разогретые электроды недопустимо, т.к. это ускоряет процесс разрушения электродов. Для обеспечения принудительного прогрева электродов служит позистор РТС (терморезистор с положительным температурным коэффициентом). Он обеспечивает задержку запуска лампы 2с.

Процесс запуска энергосберегающей лампы происходит так. В момент подачи напряжения на лампу, запускается ВЧ-генератор. Он начинает вырабатывать ВЧ-напряжение. С ВЧ-генератора напряжение поступает на ПК. Через электроды и РТС начинает течь ток прогрева. Пусковой дроссель накапливает энергию. Для создания напряжения запуска (примерно 1000В) необходимо, чтобы контур вошел в резонанс с ВЧ-генератором. Холодный РТС шунтирует пусковой контур и не дает ему войти в резонанс. Но так как через РТС протекает ток прогрева, температура РТС начинает расти, сопротивление соответственно тоже растет. В некоторый момент сопротивление РТС становится настолько высоким, что он перестает шунтировать пусковой контур. К этому моменту электроды уже достаточно прогрелись. ПК входит в резонанс с ВЧ-генератором и происходит скачек пускового напряжения создающий разряд в колбе лампы. Происходит запуск лампы. Разогретые электроды и РТС имеют достаточно большое сопротивление, а сопротивление ионизированного газа достаточно мало и ток начинает течь через разряд в колбе. Колба шунтирует пусковой контур, и он выходит из резонанса с ВЧ-генератором. Балласт переходит в режим рабочего напряжения (режим поддержания разряда) примерно 320В.

Применение РТС значительно снижает износ электродов и увеличивает срок службы лампы, а так же является личным выбором каждого производителя, но без РТС лампа более 6000ч не прослужит.

Еще один важный элемент балласта – предохранитель. Предохранитель делает энергосберегающие лампы пожаробезопасными и защищает питающую сеть от КЗ. Применение предохранителя является дополнительной но не основной мерой безопасности. Основной мерой безопасности является обеспечение высокого качества монтажа и применения качественных компонентов.

Принцип работы энергосберегающей лампы на примере наиболее распространённой схемы (лампа мощностью 11Вт).

Рисунок 3.8 – Схема энергосберегающей лампы мощностью 11Вт

Схема состоит из цепей питания, которые включают помехозащищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.

При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора. Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте, определяемой конденсатором C3, потому что его ёмкость намного меньше, чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.

Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6 и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.

Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.

Преимущества энергосберегающих ламп:

1. Энергосберегающие лампы потребляют в 5 раз меньше энергии, чем лампы накаливания. Экономия электроэнергии при этом достигает 80%.

2. Энергосберегающие лампы служат в 6, 10, а то 15 раз дольше ламп накаливания.

3. Энергосберегающие лампы выделяют в несколько раз меньше тепла, чем лампы накаливания. В лампах накаливания 95% энергии затрачивается только на нагрев спирали.

4. Незначительное тепловыделение позволяет использовать энергосберегающие лампы большой мощности в хрупких бра, светильниках и люстрах.

5. Так как в энергосберегающих лампах используется электронный балласт, мерцание светового потока полностью отсутствует.

6. Энергосберегающие лампы прекрасно работают при пониженном, до 180В, напряжении.

Недостатки энергосберегающих ламп:

1. Фаза разогрева у энергосберегающих ламп длится до 2 минут, то есть, им понадобится некоторое время, чтобы развить свою максимальную яркость. Также у энергосберегающих ламп встречается мерцание.

2.Другим недостатком энергосберегающих ламп является то, что человек может находиться от них на расстоянии не ближе, чем 30 сантиметров. Из-за большого уровня ультрафиолетового излучения энергосберегающих ламп при близком расположении к ним может быть нанесен вред людям с чрезмерной чувствительностью кожи и тем, кто подвержен дерматологическим заболеваниям. Однако если человек находится на расстоянии не ближе, чем 30 сантиметров от ламп, вред ему не наносится. Также не рекомендуется использовать в жилых помещениях энергосберегающие лампы мощностью более 22 ватт, т.к. это тоже может негативно отразиться на людях, чья кожа очень чувствительна.

3. Еще одним недостатком является то, что энергосберегающие лампы неприспособлены к функционированию в низком диапазоне температур (-15-20ºC), а при повышенной температуре снижается интенсивность их светового излучения. Срок службы энергосберегающих ламп ощутимо зависит от режима эксплуатации, в частности, они не любят частого включения и выключения. Конструкция энергосберегающих ламп не позволяет использовать их в светильниках, где есть регуляторы уровня освещенности. При снижении напряжения в сети более чем на 10% энергосберегающие лампы просто не зажигаются.

4. К недостаткам можно также отнести содержание ртути и фосфора, которые, хоть и в очень малых количествах, присутствуют внутри энергосберегающих ламп. Это не имеет никакого значения при работе лампы, но может оказаться опасным, если ее разбить. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации (их нельзя выбрасывать в мусоропровод и уличные мусорные контейнеры).

5. Еще одним недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена.

Порядок выполнения работы.

5.1. Ознакомиться с приборами и оборудованием, применяемым в данной работе, их характеристики привести в табл.5.1.

Таблица 5.1 - Технические характеристики приборов, используемых в работе.

Прибор

Тип

Система

Пределы измерения

Цена деления

Класс точности

Примечания

Люксметр

Вольт- метр

Амперметр

Ваттметр

5.2.Ознакомиться с устройством энергосберегающих ламп, сделать в отчете рисунок энергосберегающей лампы с указанием деталей и заполнить табл. 5.2.

Таблица 5.2 - Технические характеристики исследуемых ламп.

Лампа

Тип

Мощность,

Вт

Напряжение,В

Свет. поток, лм

Длина,

м

Примечания

5.3.Ознакомиться с принципиальной электрической схемой стенда и перечертить ее в отчет.

5.4. Порядок проведения опытов:

5.4.1. С помощью автоматического выключателя QF1 и магнитного пускателя КМ подать напряжение на стенд (рукоятку QF1 перевести в верхнее положение и нажать кнопку (Подача напряжения”).

5.4.2.Пакетный переключатель SA1 перевести в положение “ЛР1,2,3”.

5.4.3. Переключатель SA2 поставить в положение Uс. Включить лампу накаливания с помощью выключателя “ЛН”.

5.4.4. С помощью лабораторного автотрансформатора (ЛАТР) изменять подводимое к лампе напряжение, при этом снимая показания с приборов (амперметр А1, вольтметр V1, ваттметр W1) и занося их в таблицу 5.3.

Таблица 5.3 - Результаты экспериментальных и расчетных исследований.

Измерено

Вычислено

Напряжение U,В

Ток I,А

Мощность

Р,Вт

Освещенно сть ЕА,лк

Свет. поток Фс,лм

Светоотдача л,лм∙Вт

Световой КПД

Срок службы

, ч

Сопротивление

R, Ом

180

200

220

240

После проведения опытов снять напряжение со стенда, для чего следует нажать кнопку “Снятие напряжения” и рукоятку QF1 перевести в нижнее положение.

5.5.Начертить графики зависимости тока, мощности, светоотдачи, светового КПД, срока службы от напряжения (I,P,H,, = f(U)). Для заполнения таблицы (для расчета показателей) пользоваться выражениями (1.1)…(1.8).

5.6.По проделанной работе сделать вывод.

Контрольные вопросы:

1. Поясните преимущества и недостатки энергосберегающих лампы по сравнению с другими видами ламп.

2. Поясните принцип действия энергосберегающих ламп.

3. Каким образом изменяются характеристики энергосберегающих ламп при изменении подводимого напряжения?

4. Что характеризует световой КПД энергосберегающих ламп?

5. Поясните формулу определения светового потока энергосберегающей лампы.

Принципиальная электрическая схема стенда для выполнения лабораторных работ по курсу «Светотехника».

Требования к выполнению отчета:

Отчет выполнять на листах формата А-4 или в тетради по предмету в соответствии с требованиями ГОСТ. Рисунки, чертежи, графики выполнять карандашом с помощью чертежного инструмента. Отчет должен содержать некоторые сведения из теории, расчетные формулы, таблицы опытных и расчетных данных, графики, выводы по работе.

58