Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
статистика.docx
Скачиваний:
48
Добавлен:
12.03.2015
Размер:
229.59 Кб
Скачать

27.) Свойства массовых явлений и процессов.

Я в душе не ебу! 28.) Вариация-это…

различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности.

29.) Главное значение средних величин.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

30.) Среднее арифметическое-это…

сре́днее арифмети́ческое — одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений, деленную на их количество.

31.) Формула простой средней арифметической.

32.) Формула взвешенной средней арифметической.

33.) Категории средних величин и виды средних, к которым они относятся.

степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина.

структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют "структурными позиционными средними". Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

34.) Форума степенной средней степени d.

35.) Формула средней квадратической. Статистический показатель на ее основе.

На основе данной формулы строится такой статистический показатель как дисперсия.

36.

Формула средней кубической величины применяется при расчете с величинами кубических функций и исчисляется по формуле:

(простая)

Х - индивидуальное значение.

N – число единиц изучаемой совокупности.

(взвешенная)

fi – частота ряда распределения или удельный вес в совокупности.

 

37.

Средняя геометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:

Средние геометрические величины наиболее часто используются при анализе темпов роста экономических показателей.

Геометрическая простая

Для расчетов средней геометрической простой используется формула:

где:

  •  — цепной коэффициент роста

  •  — число этих коэффициентов роста

  • П — знак произведения

  •  — количество уровней ряда

  •  — значение начального уровня ряда

  •  — значение конечного уровня ряда

Геометрическая взвешенная

Для определения средней геометрической взвешенной применяется формула:

38.

Правило мажорантности средних:

Правило мажорантности средних : чем выше показатель степени m, тем больше величина средней.

39.Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

40.Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц совокупности по возрастающим или убывающим значениям признака и подсчет числа единиц с одним и тем же значением признака.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

Атрибутивными — называют ряды распределения , построенные по качественным признакам.

Ряды распределения , построенные в порядке возрастания или убывания значений количественного признака называются вариационными.

Формы вариционного ряда:

Ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.

Дискретный ряд – представляет собой таблицу, состоящую из двух граф или строк: конкретных значений признака и числа единиц совокупности

Интервальный ряд – представляет собой таблицу,состоящую из двух граф или строк: интервалов признака, вариация которого изучается, и числа единиц совокупности,попадающих в данный интервал(частот), или долей этого числа от общей численности совокупности(частостей)

42.

Частота – численности отдельных вариант или каждой группы вариационного ряда n-i

43.

Накопленные частоты (обозначаются S) показывают, сколько единиц совокупности имеют значение признака не больше, чем рассматриваемое, и определяются последовательным суммированием частот интервалов. При построении кумуляты интервального ряда распределения нижней границе первого интервала соответствует частота, равная нулю, а верхней границе — частота данного интервала.

44.

Частость - частота, выраженная в долях единицы или в процентах к итогу.

45.

F - критерий Фишера является параметричесикм критерием и используется для сравнения дисперсий двух вариационных рядов. Эмпирическое значение критерия  вычисляется по формуле:

где - большая дисперсия,- меньшая дисперсия рассматриваемых вариационных рядов.

         Если вычисленное значение критерия Fэмп больше критического для определенного уровня значимости и соответствующих чисел степеней свободы для числителя и знаменателя, то дисперсии считаются различными. Иными словами, проверяется гипотеза, состоящая в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: H0={Dx=Dy}.

         Критическое значение критерия Фишера следует определять по специальной таблице, исходя из уровня значимости α и степеней свободы числителя (n1-1) и знаменателя (n2-1).

         Проиллюстрируем применение критерия Фишера на следующем примере. Дисперсия такого показателя, как стрессоустойчивость для учителей составила 6,17 (n1=32), а для менеджеров 4,41 (n2=33). Определим, можно ли считать уровень дисперсий примерно одинаковым для данных выборок на уровне значимости 0,05.

         Для ответа на поставленный вопрос определим эмпирическое значение критерия:При этом критическое значение критерия Fкр(0,05;31;32)=2.

         Таким образом, Fэмп=1,4<2=Fкр, поэтому нулевая гипотеза о равенстве генеральных дисперсий на уровне значимости 0,05 принимается.

46.

Графическое изображение вариационных рядов

Графическое изображение зависимости между величинами дает возможность представить эту зависимость наглядно. Графики могут служить основой для открытия новых свойств, соотношений и закономерностей.

Наиболее употребительными графиками для изображения вариационных рядов, т. е. соотношений между значениями признака и соответствующими частотами или относительными частотами, являются полигон, гистограмма и кумулята.

Полигон чаще всего используют для изображения дискретных рядов. Для построения полигона в прямоугольной системе координат на оси абсцисс в произвольно выбранном масштабе откладывают значения аргумента, т. е. варианты, а на оси ординат также в произвольно выбранном масштабе - значения частот или относительных частот. Масштаб выбирают такой, чтобы была обеспечена необходимая наглядность, и чтобы рисунок имел желательный размер. Далее в этой системе координат строят точки, координатами которых являются пары соответствующих чисел из вариационного ряда. Полученные точки последовательно соединяют отрезками прямой. Крайнюю "левую" точку соединяют с точкой оси абсцисс, абсцисса которой находится слева от рассматриваемой точки на таком же расстоянии, как абсцисса ближайшей справа точки. Аналогично крайнюю "правую" точку также соединяют с точкой оси абсцисс.

Учебные достижения учащихся некоторого класса по математике характеризуются данными, представленными в таблице.

  Количество баллов x  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

  Число учащихся n  

 1 

 1 

 2 

 3 

 4 

 4 

 6 

 5 

 3 

 3 

 2 

 1 

     Построить полигон частот.

Решение.

     Строим точки основываясь на данных из таблицы. Полученные точки соединяем отрезками прямой. Обратите внимание на точки (0; 0) и (13; 0), расположенные на оси абсцисс и имеющие своими абсциссами числа, на 1 меньшее и большее, чем соответственно абсциссы самой левой и самой правой точек. Полигон частот изображен на рисунке.

     Если полигон строят по данным интервального ряда, то в качестве абсцисс точек берут середины соответствующих интервалов. Крайние левую и правую точки соединяют с точками оси абсцисс - серединами ближайших интервалов, частоты которых равны нулю. Конечно, в этом случае полигон лишь приближенно отображает зависимость частот от значений аргумента.

Кумулята служит для графического изображения кумулятивного вариационного ряда. Для ее построения на оси абсцисс откладывают значения аргумента, а на оси ординат - накопленные частоты или накопленные относительные частоты. Масштаб на каждой оси выбирают произвольно. Далее строят точки, абсциссы которых равны вариантам (в случае дискретных рядов) или верхним границам интервалов (в случае интервальных рядов), а ординаты - соответствующим частотам (накопленным частотам). Эти точки соединяют отрезками прямой. Полученная ломаная и является кумулятой.

По данным таблицы составить кумулятивный вариационный ряд, для которого построить кумуляту.

  Количество баллов x  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

  Число учащихся n  

 1 

 1 

 2 

 3 

 4 

 4 

 6 

 5 

 3 

 3 

 2 

 1 

Решение.

Cоставим кумулятивный вариационный ряд (см. таблицу ниже), для которого построим кумуляту.

  Количество баллов  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

  Частота  

 1 

 1 

 2 

 3 

 4 

 4 

 6 

 5 

 3 

 3 

 2 

 1 

  Накопленная частота n  

 1 

 2 

 4 

 7 

 11 

 15 

 21 

 26 

 29 

 32 

 34 

 35 

Гистограмму используют для изображения интервальных рядов. Для построения гистограммы по данным вариационного ряда с равными интервалами, как и для построения полигона, на оси абсцисс откладывают значения аргумента, а на оси ординат - значения частот или относительных частот. Далее строят прямоугольники, основаниями которых служат отрезки оси абсцисс, длины которых равны длинам интервалов, а высотами - отрезки, длины которых пропорциональны частотам или относительным частотам соответствующих интервалов.

В результате получают ступенчатую фигуру в виде сдвинутых друг к другу прямоугольников, площади которых пропорциональны частотам (или относительным частотам).

Если интервалы неравные, то на оси ординат следует откладывать в произвольно выбранном масштабе значения плотности распределения (абсолютной или относительной). Таким образом, высоты прямоугольников, которые мы строим, должны равняться плотностям соответствующих интервалов.

При графическом изображении вариационного ряда с помощью гистограммы плотность изображается так, как если бы она оставалась постоянной внутри каждого интервала. На самом деле, как правило, это не так. Если построить распределение по частям интервалов, то можно убедиться в том, что плотность распределения на различных участках интервала не остается постоянной. Плотность, полученная ранее, предствляла лишь некоторую среднюю плотность. Итак, гистограмма изображает не фактическое изменение плотности распределения, а лишь средние плотности распределения на каждом интервале.

Если построена гистограмма интервального распределения, то полигон того же распределения можно получить, если соединить прямолинейными отрезками середины верхних оснований прямоугольников.

Пример:

По результатам тестирования по математике учащихся 7-го класса получены данные о доступности заданий теста (отношение числа учащихся, правильно выполнивших задания, к числу тестировавшихся учащихся), предствленные ниже, в таблице.      Тест содержал 25 заданий. Построить гистограмму.

  Доступность задания x, %  

 25-35 

 35-45 

 45-55 

 55-65 

 65-75 

 75-85 

 85-95 

  Количество задач n  

 1 

 1 

 5 

 7 

 7 

 3 

 1 

Решение.

     Откладываем на оси абсцисс 7 отрезков длиной 10. На них, как на основаниях, строим прямоугольники, высоты которых соответственно равны 1, 1, 5, 7, 7, 3, 1. Полученная ступенчатая фигура и является искомой гистограммой.

47.

Этапы изучения вариации.

1)построение вариационного ряда;

2)графическое изображение вариационного ряда, анализ графического изображения;

3)анализ вариационного ряда с помощью системы показателей.

 

48) Медиа́на — возможное значение признака, которое делит ранжированную совокупность (вариационный ряд выборки) на две равные части: 50 % «нижних» единиц ряда данных будут иметь значение признака не больше, чем медиана, а «верхние» 50 % — значения признака не меньше, чем медиана.

Медиана определяется для широкого класса распределений (например, для всех непрерывных), а в случае неопределённости, естественным образом доопределяется, в то время как математическое ожидание может быть не определено.

У интервального вариационного ряда распределения медиана принадлежит медианному интервалу и имеет определённое значение.

Для определения медианы используют накопленные частоты по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив пополам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

49)

50) Мода — значение признака, имеющее наибольшую частоту в статистическом ряду распределения. 

Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту.

51) Размах вариации – это разность между наибольшим и наименьшим значением признака в изучаемой совокупности: R=xmax – xmin,

где   xmax – наибольшее значение признака;

xmin – наименьшее значение признака.

Размах вариации не отражает отклонений всех значений признака – это его недостаток. Он исчисляется при контроле качества продукции для определения систематически действующих причин на производственный процесс.

52) Дисперсия – – определяется по формулам:

для ранжировочного ряда (несгруппировочных данных): ;

Коэффициент осцилляции – это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. .

Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины. .

53) В итоге, средне линейное отклонение будет рассчитываться по формуле:

где

a – среднее линейное отклонение,

x – анализируемый показатель, с черточкой сверху – среднее значение показателя,

n – количество значений в анализируемой совокупности данных,

оператор суммирования, надеюсь, никого не пугает.