Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia_rasteny_Otvety.docx
Скачиваний:
629
Добавлен:
12.03.2015
Размер:
514.62 Кб
Скачать

9. Экология дыхания (влияние внешних и внутренних факторов); изменение интенсивности дыхания в онтогенезе растений. Влияние внешних и внутренних факторов на интенсивность фотосинтеза

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО2, поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО2. Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО2, выделенного при дыхании, прибавляют к количеству СО2, поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14СО2).

В том случае, когда пересчет количества поглощенного СО2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО2. Обратная величина названа квантовым выходом.

Ассимиляционное число – это соотношение между количеством СО2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет.При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

Рис. 2.26.Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза):

1 – скорость выделения СО2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО2, чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точкафотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО2, сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).

Рис. 2.27. Световые кривые светолюбивого (1) и теневыносливого (2) растения (а, б – компенсационные точки)

Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С3-растениях и в С4-растениях.

Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28).    

Рис. 2.28.Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО2 нужно 686: 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114: 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Изменение интенсивности дыхания в онтогенезе. Наиболее высокой обладают молодые органы и ткани растений, находящиеся в состоянии активного роста. Повышение интенсивности дыхания прекращается, когда заканчивается рост листа. Затем дыхание снижается до уровня, приблизительно равного половине максимума, и довольно долго остается без изменений. Цветение и плодоношение сопровождается усилением дыхания развивающихся цветков и плодов, что связано с образованием новых органов и тканей, обладающих высоким уровнем обмена веществ. Подъем интенсивности дыхания перед полным созреванием плодов называется климактерическим подъемом дыхания. Сходное явление наблюдается и при пожелтение листьев. Перед климактерическим подъемом дыхания в тканях резко усиливается образование этилена, который оказывает на обмен двоякое влияние. 1. Увеличивается проницаемость мембраны и усиливается гидролиз белков, в результате чего возрастает количество доступных дыханию субстратов. 2. В период подъема климактерического дыхания стимулируется синтез белков возможно дыхательных ферментов.

МИНЕРАЛЬНОЕ ПИТАНИЕ

  1. История развития учения о минеральном питании растений.

Первые труды появляются в средние века. Среди них назовем «Научный трактат о различных почвах (солях) и сельском хозяйстве» французского естествоиспытателя Палисси. В этом сочинении впервые почва рассматривается как источник питания растений минеральными солями, высказывается мысль о необходимости возврата в почву минеральных веществ в виде удобрений.

Ван-Гельмонт. Им был поставлен эксперимент с растениями, на основании которого был сделан ошибочный вывод о питании растений водой. Ива и горшок с землей (Водная теория, была ошибочна)

Глаубер выдвинул гипотезу, согласно которой основой роста растений является селитра( «соль плодородия»), получаемую из смеси навоза с землей. Глаубер предположил, что она образуется из пищи животных. Он советовал вносить селитру под виноградники, смачивать раствором селитры высеваемое зерно.

Лавуазье установил закон сохранения вещества, определил состав воздуха и процесс образования углекислого газа, сделал ряд других важных открытий. Вместе с тем он занимался и вопросами, относящимися к агрономической химии. Он писал: «Растения черпают материалы, необходимые для своей организации, в воздухе, который их окружает, в воде, вообще в минеральном царстве.».

Пристли проделал замечательный опыт. Он взял стеклянный колпак, изолировал под ним мышь и горящую свечу, потом поместил мяту. Вывод: под действием зеленых растений воздух становится пригодным для дыхания и горения.

Ингенгаус обнаружил, что только растения, причем только на свету, поглощают из воздуха углекислоту, а выделяют при этом кислород. Сами растения непрерывно дышат, но на свету значительно больше выделяют кислорода, а при отсутствии света сами используют некоторую часть O2.

Сенебье и Соссюр представили экспериментальные доказательства минерального корневого и воздушного питания растений. Ученые показали, что в усвоении углекислого газа участвует «зеленый крахмал», то есть хлорофилл. Ученые показали, что под влиянием солнечной радиации листья испаряют влагу, способствуя этим доступу новых порций «соков» из почвы и корней в надземные органы растений. Под действием света они поглощают углекислый газ и выделяют кислород. Корни из почвы доставляют растениям лишь малую часть пищи, но эти минеральные вещества им совершенно необходимы.

Тэер был сторонником гумусовой теории питания растений. Согласно этой теории, перегной непосредственно поглощается корнями и служит основной пищей растениям. Минеральные вещества эта теория ошибочно рассматривала лишь как вспомогательные, содействующие усвоению гумуса.

Либих показал, что все минеральные соединения растения поглощают из почвы. Поэтому для восстановления почвенного плодородия эти вещества в почву необходимо возвращать, «закон возврата»; «закон минимума»: уровень урожая зависит от количества того минерального вещества, которое находится в минимуме. При этом увеличение содержания других минеральных веществ не обеспечивает увеличения урожая.

Буссенго поставил ряд точных экспериментов, в результате которых доказал, что растения не используют азот, содержащийся в воздухе. Установив, что клевер и люцерна обогащают почву азотом, Буссенго предположил, что эти растения поглощают азот из воздуха.

2. Содержание минеральных элементов в растениях. Классификация минеральных элементов: макро- и микроэлементы.

Зольные элементы сосредоточены в тех органах и клетках, уровень жизнедеятельности которых достаточно высок. Как правило, чем богаче почва и суше климат, тем выше содержание золы в растении. Необходимые элементы. Это те, без которых организм не может завершить свой жизненный цикл. Ю. Сакс и И. Кноп установили, что для жизнедеятельности растения, кроме С, О, Н, необходимы следующие 7 элементов: N, Р, S, К, Са, Mg, Fe. Позже была показана необходимость для растений в еще шести элементов: бора, марганца, цинка, меди, молибдена и хлора. Для некоторых растений характерны еще и другие элементы (например натрий). Все необходимые элементы корневого питания подчиняются основным правилам Либиха. Все необходимые для жизни растений элементы в зависимости от их количественного содержания в растении принято разделять на макроэлементы (содержание более 0,01%) — N, Р, S, К, Са, Mg, Fe и микроэлементы (содержание менее 0,01%) — Mn, Си, Zn, В, Mo, О

Общие значения питательных элементов: 1) входят в состав биологически важных органических веществ; 2) участвуют в создании определенной ионной концентрации, стабилизации макромолекул и коллоидных частиц (электрохимическая роль); 3) участвуют в каталитических реакциях, входя в состав или активируя отдельные ферменты.

3. Макроэлементы – K, Ca, Mg, S, P, их физиологическая роль.

Сера. Сера усваивается растениями только в окисленной форме—в виде аниона SCV. В растении основная масса аниона сульфата восстанавливается до —SH и —S—S— групп. Входит в состав трех аминокислот — цистина, цистеина и метионина, витаминов, коферментов (биотин, тиамин, коэнзим А, глютатион, липоевая кислота). Участвует в белковом обмене, аэробной фазе дыхания, синтезе жиров, в образовании макроэргической связи, в метаболизме и др.

Часть серы находится а клеточном соке в виде иона сульфата. При отмирании корня в условиях, когда ему не хватает кислорода, серосодержащие соединения распадаются с образованием сероводорода, который ядовит для корня. При недостатке серы, так же как и при недостатке азота, начинается разрушение хлорофилла, но первыми испытывают недостаток серы верхние листья.

Фосфор. Фосфор усваивается растениями в окисленной форме в виде солей фосфорной кислоты. Входит в состав нуклеиновых кислот (ДНК и РНК), нуклеотидов (АТФ, НАД, НАДФ), нуклеопротеидов, витаминов, фосфолипидов (мембраны) и др. Участвует в процессах гликолиза и аэробного дыхания. Освобождающаяся в этих процессах энергия накапливается в виде богатых энергией фосфатных связей. Принимает участие в фотосинтезе. При отсутствии фосфора а начале жизни и при последующей подкормке растения фосфорными солями листья растений некоторое время страдают из-за усиленного поступления фосфора и нарушенного в связи с этим азотного обмена.

Калий, кальций и магний усваиваются из любых растворимый солей, анионы которых не обладают токсическим действием или связанные с каким-нибудь нерастворимым веществом, обладающим кислотными свойствами. Они (K, Ca, Mg) необходимы для питания.

Роль: адсорбируясь на поверхности коллоидных частиц протоплазмы, они создают вокруг них определенные электростатические силы, они определяют оводненность и водоудерживающую силу коллоидов.

Калий. Калий в растениях содержится в больших кол-ах, особенно в их вегетативных частях. Калий оказывает большое влияние на коллоиды плазмы, он повышает их гидрофильность (разжижает плазму). Калий является также катализатором ряда синтетических процессов: как правило, он катализирует синтез высокомолекулярных веществ из более простых, способствует синтезу сахарозы, крахмала, жиров, белков, При недостатке калия процессы синтеза нарушаются, и в растении скапливаются глюкоза, аминокислоты и продукты распада других высокомолекулярных соединений. При недостатке калия на нижних листьях появляется краевой запал — края листовой пластинки отмирают, листья приобретают характерную куполообразную форму, на листьях появляются некрозы.

Кальций. Часть кальция находится в клеточном соке. Этот кальций не принимает активного участия в процессах обмена веществ, он обеспечивает нейтрализацию избыточно образующихся органических кислот. Часть кальция сосредоточена в плазме—здесь кальций понижает гидрофильность плазменных коллоидов, повышает их вязкость. Кальций входит в состав ядерного вещества, играет роль в процессах деления клетки. Участвует в образовании клеточных оболочек, формировании стенок корневых волосков. При отсутствии кальция быстро поражаются точки роста надземные частей и корня, так как кальций не передвигается из старых частей растения к молодым. Корни ослизняются, рост их почти прекращается или идет ненормально.

Магний. Входит в состав хлорофилла. Магний важен для дыхательного обмена, он катализирует ряд реакций образования фосфатных связей и их переноса. Так как богатые энергией фосфатные связи участвуют в самых различных синтезах, то без магния эти процессы не идут. При недостатке магния разрушается молекула хлорофилла, причем жилки листьев остаются зелеными, а участки тканей, расположенные между жилками, бледнеют. Это явление называется пятнистым хлорозом.

Железо. Поглощается в виде растворенных солей, комплексных и органических соединений. В растительных тканях железо частично переходит в органические соединения. Находясь в составе ферментов, он принимает активное участие в окислительно-восстановительных процессах. Железо входит в состав дыхательных ферментов (цитохрома, цитохромоксидазы, каталазы и пероксидазы). Принимает участие в образовании хлорофилла. При недостатке железа развивается хлороз. При недостатке железа изменяется окраска молодых листьев (желтеют), фотосинтез; рост растений замедляется.

4. Физиологическая роль азота в жизни растений. Источники азотного питания высших растений. Фиксация молекулярного азота.

Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является главным элементом корневого питания, так как входит в состав белков всех живых клеток. Азот является составной частью нуклеиновых кислот, входящих в состав ядра и являющихся носителями наследственности. Является частью хлорофилла, входит в состав ферментов, которые регулируют реакции обмена веществ, и ряда витаминов. Все формы азота растении превращаются в аммиачные соединения, которые, вступая в реакцию с органическими кислотами, образуют аминокислоты и амиды — аспарагин и глютамин. Аммиачный азот обычно не скапливается в растении в значительных количествах. Это наблюдается только при недостатке углеводов; в этих условиях растение не может его переработать в безвредные органические вещества — аспарагин и глютамин. Избыток аммиака в тканях зачастую приводит к их повреждению. Если растение испытывает недостаток в азоте, то это прежде всего сказывается на темпе роста. Новые побеги почти не образуются, размеры листьев уменьшаются. При отсутствии азота в старых листьях хлорофилл разрушается. Биологическая фиксация азота атмосферы имеет важное значение, благодаря ей азот переходит в формы, которые могут использовать все растительные, а через них и животные организмы.Организмы, способные к усвоению азота воздуха, можно разделить на группы: 1) симбиотические азотфиксаторы — микроорганизмы, которые усваивают азот атмосферы, только находясь в симбиозе с высшим растением; 2) не симбиотические азотфиксаторы — микроорганизмы, свободно живущие в почве и усваивающие азот воздуха; 3) ассоциативные азотфиксаторы — микроорганизмы, обитающие на поверхности корневой системы злаков, т. е. живущие в ассоциации с высшими растениями. Важное значение имеют симбиотические азотфиксаторы, живущие в клубеньках корней бобовых растений (клубеньковые бактерии), относящиеся к роду Rhizobium. Azotobacter. Для того чтобы эти микроорганизмы осуществляли процесс фиксации азота, необходимо присутствие молибдена, железа и кальция. Конечным продуктом фиксации азота является аммиак. В процессе восстановления азота до аммиака участвует мультиферментный комплекс — нитрогеназа. Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Это указывает на связь усвоения азота атмосферы с процессами дыхания, а также фотосинтеза (источника углеводов). Для восстановления N2 до NH3 требуется шесть электронов, согласно уравнению:N2 + 6е + 2Н+ -> 2NH3 Процесс требует АТФ как источника энергии: затрачивается 25—35 молекул АТФ, т.к нитрогеназа — фермент с низкой субстратной специфичностью. Особенность нитрогеназы заключается и в том, что для работы фермента требуются анаэробные условия. Вместе с тем в клетках высшего растения кислород необходим для поддержания дыхания. Роль леггемоглобина заключается в связывании 02 в организме бактерий и создании условий для работы нитрогеназы. Для образования леггемоглобина необходимы Fe, Сu и Со. Для нормального протекания процесса азотофиксации необходимы Мо и Fe, входящие в состав нитрогеназы. Молибден поддерживает конформацию нитрогеназы, участвует в связывании азота и переносе электронов, а также индуцирует синтез нитрогеназы. Кобальт входит в состав витамина В12, который вовлекается в процесс биосинтеза леггемоглобина. В надземные органы растения-хозяина азотистые вещества передвигаются главным образом в виде амидов (аспарагина, глутамина).

5. Азотный обмен высших растений: восстановление нитратов и пути их усвоения аммиака.

Высшие растения поглощают соединения азота из почвы. Основным источником азотного питания для растений являются нитраты и аммиак. Корневые системы растений хорошо усваивают нитраты, которые, поступая в корни растения, подвергаются ферментативному восстановлению до нитритов и далее до аммиака. Этот процесс происходит главным образом в корнях, однако этой способностью обладают и клетки листьев. Восстановление нитратов до аммиака идет через ряд этапов. На первом этапе нитраты восстанавливаются до нитритов при участии фермента нитратредуктазы:

N03- + 2е -> N02

Нитратредуктаза — это фермент, содержащий в своем составе ФАД, гем и молибден. Фермент локализован в цитозоле, где и протекает процесс восстановления нитратов до нитритов. Поставщиком НАДН являются процесс дыхания и отчасти световые реакции фотосинтеза. Именно поэтому восстановление нитратов тесно связано с дыхательным газообменом и фотосинтезом. Для восстановления нитратов могут быть использованы продукты, образующиеся в процессе нециклического фотофосфорилирования (НАДФН, АТФ). При низкой освещенности, дефиците Fe и Мо активность фермента снижается, и нитраты накапливаются в клетке.

Второй этап — восстановление нитратов до аммиака катализируется ферментом нитритредуктазой:

N02- + 6е -> NH4+

Нитритредуктаза — это фермент, содержащий в качестве простетической группы гем. Активность этого фермента выше, чем нитратредуктазы. Нитритредуктаза локализована в хлоропластах листьев или пропластидах корней. Донором электронов в листьях служит восстановленный ферредоксин, который образуется при функционировании на свету ФС I. Нитриты могут поступать в растение из почвы и подвергаются восстановлению до NH4. Передвижение нитритов из цитоплазмы в хлоропласты стимулируется Са. Осуществляется и обратный процесс — окисление аммонийной формы азота в нитратную, что опровергает широко распространенное мнение об исключительно экзогенном происхождении нитратов в растениях.

Важнейшим источником азотного питания является аммонийный азот. Накопление аммиака в клетках, приводит к нежелательным последствиям. Однако растения обладают способностью обезвреживать аммиак путем присоединения его к органическим кислотам с образованием амидов (глутамина, аспарагина). Растения можно разделить на амидные, образующие амиды — аспарагин и глутамин, и аммиачные, образующие соли аммония. В процессе дыхания в качестве промежуточных продуктов образуются органические кислоты, в том числе а-кетоглутаровая и щавелевоуксусная. Эти кислоты в результате реакции прямого восстановительного аминирования присоединяют аммиак: Реакция идет в две стадии. На промежуточном этапе образуется иминокислота. Катализируется реакция ферментом глутаматдегидрогеназой с активной группой НАД. Этот фермент локализован главным образом в митохондриях, но может содержаться в цитозоле и хлоропластах. Аспарагиновая кислота образуется по аналогии с глутаминовой кислотой путем восстановительного аминирования щавелевоуксусной кислоты при участии фермента аспартатдегидрогеназы. На активность глутаминсинтетазы влияет присутствие катионов: Mg2+, Мп2+, Со2+, Са2+. Фермент обнаружен в цитозоле, но может находится и в хлоропластах. Образование аспарагина происходит аналогичным путем. В более молодых органах (листьях) и даже в более молодых клетках образование амидов идет интенсивнее. Роль амидов в растении разнообразна. Это не только форма обезвреживания аммиака, это и транспортная форма азотистых соединений, обеспечивающая отток их из одного органа в другие. Важно, что амиды и их непосредственные предшественники — глутаминовая и аспарагиновая кислоты — являются материалом для построения многих других аминокислот в процессах переаминирования, а также перестройки их углеродного скелета.

6. Микроэлементы в жизни растений.

Кроме основных элементов, для роста растений необходим целый ряд так называемых микроэлементов. Микроэлементы усваиваются только при низких концентрациях соответствующих солей. При увеличении дозы они становятся уже ядовитыми для растения. Роль их в жизни растений, подобно витаминам, связана с деятельностью ферментов.

Бор. Для того чтобы растение нормально развивалось, его необходимо снабжать бором. При отсутствии бора приостанавливается рост корней и наземной части. Точки роста отмирают, так как клетки молодой растущей ткани —меристемы перестают делиться. Бор принимает участие в процессе прорастания пыльцы и росте завязи, поэтому при недостатке его резко снижается семенная продукция растений.Бор играет большую роль в передвижении Сахаров; ряд борорганических соединений является активаторами роста.

Медь. Значительная доля меди сосредоточена к хлоропластах. По-видимому, медь катализирует какие-то реакции в фотосинтезе, При недостатке меди хлоропласту оказываются недолговечными. Медь входит в состав ряда окислительных ферментов (поли-фенолксидаза, тирозиназа и др.)Медь играет большую роль в белковом обмене.

Цинк. Цинк входит в состав важного фермента —карбоан-гидразы. Кроме того, цинк участвует в синтезе аминокислоты триптофана, являющегося предшественником ауксинов в растении.

Марганец. Катализирует реакции арбоксилирования и играет важную роль в фотосинтезе и дыхании. Преимущественно он скапливается в листьях и в точках роста. Его наличие способствует окислительным превращениям.Присутствие марганца в питательном растворе повышает дыхание корней, при этом заметно увеличивается усвоение нитратного азота. Особенно характерным свойством марганца является его способность окислять соединения железа.

Молибден. Молибден необходим растениям в чрезвычайно малых количествах. Он катализирует процессы восстановления нитратов и синтеза белковых веществ.

7. Механизм поступления ионов в клетку. Роль клеточной оболочки. Транспорт ионов через мембраны: пассивный и активный.

Поглощение ионов клеткой начинается с их взаимодействия с клеточной стенкой. Ионы могут частично локализоваться в межмицеллярных и межфибриллярных промежутках клеточной стенки, фиксироваться в клеточной стенке электрическими зарядами. Объем клетки, доступный для свободной диффузии ионов, получил название свободного пространства. Свободное пространство включает межклетники, клеточные стенки и промежутки, которые могут возникать между клеточной стенкой и плазмалеммой. Иногда его называют кажущееся свободное пространство (КСП). Термин “кажущееся” означает, что объем зависит от объекта и природы растворенного вещества. Свободное пространство растения получило название апопласт, симпласт — совокупность протопластов всех клеток. Поглощение и выделение веществ в КСП — физико-химический пассивный процесс, не зависимый от температуры и ингибиторов энергетического и белкового обменов. Клеточная стенка обладает свойствами ионообменника, так как в ней адсорбированы ионы Н + и НCO — 3 , обменивающиеся в эквивалентных количествах на ионы внешнего раствора. Для того чтобы проникнуть в цитоплазму и включиться в обмен веществ, ионы должны пройти через плазмалемму. Транспорт ионов через мембрану может быть пассивным и активным. Пассивное поглощение не требует затрат энергии и осуществляется путем диффузии по градиенту концентрации вещества, для которого плазмалемма проницаема. Пассивное передвижение ионов определяется не только химическим потенциалом m , как это имеет место при диффузии незаряженных частиц, но и электрическим потенциалом e . Оба потенциала объединяют в виде электрохимического потенциала ` m : ` m = m + nF e , где m — химический, e — электрический, ` m — электрохимический потенциалы, n — валентность иона, F — константа Фарадея. Нужно это?

Электрический потенциал на мембране — трансмембранный потенциал может возникнуть по следующим причинам: 1) если поступление ионов идет по градиенту концентрации, но благодаря разной проницаемости мембраны с большей скоростью поступают катионы, чем анионы. В силу этого на мембране возникает разность электрических потенциалов, что приводит к диффузии противоположно заряженного иона; 2) при наличии на внутренней стороне мембраны белков, фиксирующих определенные ионы; 3) в результате активного транспорта либо катиона, либо аниона, в этом случае противоположно заряженный ион может передвигаться пассивно по градиенту электрического потенциала.

Активный транспорт — это транспорт, идущий против электрохимического градиента с затратой энергии, выделяющейся в процессе метаболизма. С температурой возрастает, яды ингибируют. А увеличение АТФ усиливает процесс поглощения. Активный транспорт ионов через мембрану осуществляется с помощью переносчиков. Ион реагирует со своим переносчиком на поверхности плазмалеммы. Комплекс переносчика с ионом подвижен в самой мембране и передвигается к ее внутренней стороне. Здесь комплекс распадается и ион освобождается во внутреннюю среду, а переносчик передвигается к внешней стороне мембраны. Транспорт с участием переносчиков может идти по градиенту электрохимического потенциала. Это пассивный транспорт, но благодаря переносчикам он идет с большей скоростью, чем обычная диффузия и этот процесс носит название облегченной диффузии. Для использования энергии АТФ должна быть гидролизована: АТФ + НОН ® АДФ + Фн . Катализируется АТФазой. Транспортные АТФазы являются высокомолекулярными липопротеидами. Для растений большое значение имеет Н + — АТФаза (водородный насос или водородная помпа. Перенос ионов водорода сопровождается переносом катионов в обратном направлении. Такой процесс называется антипорт. Вместе с протоном могут двигаться анионы — симпорт. Освобождаемая при распаде АТФ энергия используется для изменения конфигурации самой АТФазы, благодаря чему участок фермента, связывающий определенный ион, поворачивается и оказывается по другую сторону мембраны.

Внутриклеточный транспорт ионов осуществляется благодаря движению цитоплазмы и по каналам эндоплазматического ретикулума. Ионы попадают в вакуоль, если цитоплазма и органеллы уже насыщены ими. Для того, чтобы попасть в вакуоль, ионы должны преодолеть еще один барьер — тонопласт. Транспорт ионов через тонопласт совершается также с помощью переносчиков и требует затраты энергии.

8. Корень как орган поглощения минеральных элементов. Метаболизм корней.

Основной зоной поглощения питательных веществ, снабжающей и надземные органы растения, является зона растяжения клеток и зона корневых волосков. В меристематической зоне нет дифференцированной сосудистой системы. При этом флоэма дифференцируется раньше, и лишь несколько выше по длине корня образуется ксилема. Именно по ксилеме происходит передвижение воды с растворенными питательными веществами. Поэтому основная масса поглощенных меристемой ионов используется в этих же клетках.

Выше зоны корневых волосков расположена зона ветвления корня. В этой зоне поверхность покрыта слоем пробки и в поглощении питательных солей практически не участвует. Различные зоны корня поглощают разные минеральные элементы. Показано, что Са2+ поступает только в апикальные зоны, К+, NH4+, фосфаты абсорбируются всей корневой системой.

Особенности поступления: способность растений к избирательному концентрированию веществ; относительная независимость поступления воды и солей; зависимость от дыхания и фотосинтеза; ускорение процесса под влиянием температуры и света.

В корневой системе различают два объема — апопласт и симпласт. Большая часть коллоидов почвы заряжена отрицательно, на их поверхности в адсорбированном (поглощенном) состоянии находятся катионы. Катионы и анионы, находящиеся в поглощенном состоянии на частицах почвенного поглощающего комплекса, могут обмениваться на ионы, адсорбированные на поверхности клеток корня. Так может осуществляться поступление катионов К+, Са2+, Na+ в обмен на протоны, а также анионов N03-, Р043- и других в обмен на НС03- или анионы органических кислот. Поглощенные ионы адсорбируются на поверхности клеточных оболочек ризодермы. Из адсорбированного состояния ионы могут по коре корня передвигаться двумя путями: по апопласту и симпласту. При поступлении в симпласт ионы проникают через мембрану и далее передвигаются по плазмодесмам к сосудам ксилемы.

Ток воды с растворенными веществами, движущийся по свободному пространству (апопласту), как бы омывает все клетки коры. На всем этом пути могут наблюдаться адсорбция веществ клеточными стенками, поступление ионов в клетки через соответствующие мембраны и включение их в обмен веществ, т. е. метаболизация. Необходимо учесть, что на пути движения по апопласту имеется преграда в виде клеток эндодермы с поясками Каспари. Передвижение через клетки эндодермы возможно, по-видимому, только через цитоплазму. В связи с этим перенос ионов через мембраны клеток эндодермы необходим и также осуществляется с помощью переносчиков. В целом между апопластом и симпластом в корневой системе происходит непрерывное взаимодействие и обмен питательными солями.

9. Экология минерального питания: влияние внешних и внутренних факторов. Физиологические основы применения удобрений.

Влияние внешних условий

При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пределах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. Снижение концентрации кислорода ниже 3% вызывает падение поглощения примерно в два раза. В присутствии легко поглощаемого аниона катионы той же соли поступают быстрее. Ионы с одинаковым зарядом обычно конкурируют между собой.

Влияние внутренних факторов

Зависит от интенсивности дыхания. Процесс дыхания может оказывать влияние на поступление солей в нескольких направлениях. Так, в процессе дыхания выделяющийся углекислый газ в водной среде диссоциирует на ионы Н+ и НС03-. Адсорбируясь на поверхности корня, эти ионы служат обменным фондом для поступающих катионов и анионов. В процессе переноса ионов через мембрану участвуют специфические белки-переносчики, синтез которых находится в зависимости от интенсивности дыхательного процесса.

Рациональное внесение питательных веществ в виде удобрений — мощный фактор повышения урожайности растений. Однако необходимо учитывать, что завышенные дозы удобрений представляют не только бесполезную их трату, но могут привести к ряду весьма вредных последствий. Прежде всего, это может создать повышенную концентрацию почвенного раствора. Большинство культурных растений чувствительны к этому показателю. Повышение содержания какой-либо питательной соли может оказать непосредственное токсическое действие на растительный организм. Для установления обоснованных норм удобрений необходимо учитывать наличие питательных веществ в почве, потребности данного растения, свойства вносимых удобрений, состав корневых выделений, транспирационные коэффициенты, фотосинтез, кислотность почв.

РОСТ И РАЗВИТИЕ

  1. Рост и развитие растений. Этапы онтогенеза высших растений: эмбриональный, ювенильный, размножение, старость и отмирание.

Критерием темпов развития служит переход растений к воспроизведению, к репродукции. Критерии темпов роста определяют скоростью нарастания массы, объема, размеров растения.

Развитие высших растений подразделяют на четыре этапа: 1) эмбриональный, 2) ювенильный (молодость). з) репродуктивный (зрелость), 4) старость.

Эмбриональный этап — это период образования зародыша и семени, который начинается со слияния яйцеклетки и спермия и образования зиготы на материнском растении. Зародыш состоит из меристематических тканей и питается гетеротрофно, т. е. за счет питательных веществ, поступающих из материнского растения. У цветковых растений зигота делится поперек, образуя материнскую клетку суспензора (нижняя клетка) и будущий проэмбрио (верхняя клетка). В суспензорной части образуется подвесок, продвигающий зародыш вглубь эндосперма. На стадии глобулы зародыш имеет шаровидную форму. Далее у двудольных синхронно растут две семядоли, что приводит к стадии сердечка, а затем торпедо. У некоторых растений на эмбриональной стадии формируются уникальные органы (например, щиток, колеоптиль или гаустория). Эмбриональный этап заканчивается полным формированием семян и переходом их в состояние покоя. Этап молодости (ювенильный) у семенных растений начинается с прорастания семян или органов вегетативного размножения и характеризуется быстрым накоплением вегетативной массы. Растения в этот период не способны к половому размножению.

У семян по окончании периода покоя поглощение ими воды служит пусковым фактором прорастания. Это поглощение сопровождается повышением проницаемости семенных покровов для Н2О и за счёт гидратации биополимеров в клетках. В результате развивается онкотическое давление (давление набухания) и семенные покровы разрываются.

Проклёвывание начинается, когда семена достигают критической влажности (40-65% от сырой массы) и происходит путём роста растяжением самого зародышевого корня или гипокотиля, в результате чего кончик корешка выталкивается из семени.

Вслед за корнем начинается рост побегов. Прорастая в темноте (почве) корень и побег ориентируется по гравитационному вектору. На этом этапе развития питание растения – гетеротрофное. И лишь, когда проросток выходит из земли и начинает зеленеть, происходит переход на автотрофный тип питания. Рост зародышевого корня и стебля сопровождается появлением зон деления растения, дифференциации клеток. Благодаря дальнейшему росту главного, боковых и придаточных корней и формированию побегов, ветвления, роста листовых пластинок, утолщению стебля растения к концу ювенильного этапа накапливает значительную вегетативную массу.

Продолжительность ювенильного периода у разных видов растений неодинаково: от нескольких недель (травы) до десятков лет (у древесных). Этап молодости характеризуется полным отсутствием цветения.

Этап зрелости и размножения - это период готовности к зацветанию и образованию органов вегетативного размножения, формирования семяни плодов. Имеет особое значение в жизни растений. В этот период растение наиболее жизнеспособно, оно сформировало вегетативную массу, достаточную для обеспечения роста и развития цветков, семян и плодов, которые являются гетеротрофными органами.У растений выделяют 3 типа размножения: половое, бесполое, вегетативное.

Этап старения (старости и отмирания) — это период от полного прекращения плодоношения до естественной смерти растения. Старение — это период закономерного ослабления процессов жизнедеятельности, изнашивания, повышения чувствительности растительного организма к неблагоприятным условиям среды. Старение включает в себя изменения на молекулярном‚ клеточном, органном и организменном уровнях растения. Отмирание — конечный результат негативных изменений, накопившихся в растении при старении. У однолетних злаков растение отмирает цели ком в результате какого-то общего процесса. У многолетних трав ежегодно отмирают отплодоносившие генеративные побеги, а узел кущения, корневая система и другие подземные части остаются жизнеспособными. У яблони, груши и других культур ежегодно после плодоношения отмирают плодовые веточки. Осенью одновременно стареют и опадают все листья, но большая часть побегов и корневая система сохраняют жизнеспособность.

  1. Фазы роста растительной клетки: деление, растяжение и дифференцировка. Старение и смерть клетки.

В основе роста лежит увеличение числа и размеров клеток, сопровождаемое их дифференциацией, накоплением различий между клетками. Рост клеток делят на три фазы: эмбриональную (деление), растяжения, дифференцировки.

Для эмбриональной фазы (деления) характерны деление клеток, увеличение массы их протоплазмы и ядра. Клетки мелкие, с очень тонкими стенками, вакуолей нет или зачаточные. Дочерние клетки, достигая размеров материнской, могут вновь делиться. Эмбриональные клетки точек роста синтезируют ауксин. Для делящихся клеток характерно относительно низкое содержание ИУК и АБК и высокое — цитокининов. Для деления клеток необходимы витамины: тиамин, пантотеновая кислота, пиридоксин, фолиевая кислота, мезоинозит, аминокислоты (цистеин, триптофан), а также пурины содержащиеся в значительных количествах в эмбриональных тканях. Для зон клеточного деления характерен интенсивный обмен веществ. После 3—5 делений клетки периферийной зоны переходят в фазу растяжения. Инициальные же клетки меристемы продолжают делиться на протяжении всего периода роста растительного организма, оставаясь эмбриональными.

Для фазы растяжения характерно быстрое увеличение объема клеток. Рост клетки происходит благодаря увеличению вакуоли, растягивающей клетку. Вода поступает в вакуоль осмотически. Концентрация клеточного сока повышается за счет сахаров, аминокислот, ионов. Резко возрастает интенсивность дыхания в расчете на клетку. Условием роста клеточной оболочки является ее разрыхление, которое связано с действием ауксина. Рост клеточной оболочки обеспечивается новообразованием составляющих ее полимеров. В конце фазы растяжения происходит одревеснение клеточных стенок, повышается содержание фенольных ингибиторов и абсцизовой кислоты, снижается содержание ауксина. Рост растяжением обеспечивает увеличение площади листовых пластинок, длины стебля и корневой системы растений. Следует отметить, что клетка в фазе растяжения характеризуется не только максимальной интенсивностью аэробного дыхания и поглотительной активности, но и минимальной устойчивостью к неблагоприятным факторам среды.

В фазе дифференциации в структуре и функциях клетки появляются характерные особенности, определяющие ее принадлежность к конкретной специализированной ткани. Специализация клеток происходит уже в меристематической зоне под влиянием местоположения: клеточного окружения, полярности и др. Специализация клеток является следствием дифференциальной активности их генов. Важную роль в этом процессе играют фитогормоны, особенно ауксин. В фазе дифференциации большие изменения наблюдаются в клеточной стенке: откладываются новые слои целлюлозы, включаются лигнин, суберин и др. Появляются клетки механических и проводящих тканей.

Старение и отмирание завершают онтогенез клеток. В результате преобладания гидролитических процессов над синтетическими в стареющих клетках снижается содержание РНК‚ белков, повышаются активность пероксидазы и кислых протеаз, проницаемость мембран, разрушаются хлорофилл и хлоропласты и др. Имеются две гипотезы, объясняющие механизмы старения: накопление повреждений в генетическом аппарате, мембранах и в других структурах, увеличение концентрации ядовитых веществ в клетке; включение генетической программы старения как последнего этапа онтогенеза. Процессы старения клетки того или иного органа растения резко ускоряет уменьшение поступления ауксина, цитокинина, гиббереллина, увеличение содержания этилена и абсцизовой кислоты.

3. Типы роста у растений и морфогенез основных вегетативных органов –стебля, листа, корня. Коррелятивный рост.

Основные органы побега – стебель, листья, цветки, почки закладываются в апекальной меристеме. Апекс побега состоит из меристематичесих клеток, которые могут быть разделены на две зоны – тунику и корпус. Туника – один или два слоя клеток, покрывающих апекс. Клетки туники делятся антиклинально, т.е перпендикулярно поверхности, и дифференцируются в эпидермис.

Все остальные клетки, лежащие под туникой, составляют корпус. Клетки корпуса формируют кору, центральный цилиндр и сердцевину побега. Периферические клетки корпуса дифференцируются в листовые примордии и зачатки почек.

Рост и развитие листа.

Формирующийся лист проходит 4 фазы:

1. образование примордия 2. формирование оси листа З. закладка пластинки листа за счет боковой меристемы 4. рост пластинки растяжением.

Каждый листовой примордий образуется в виде бугорка в периферической меристеме корпуса благодаря локальным периклинальным делениям (параллельно поверхности). Период между заложением двух листовых примордиев называется пластохроном. Продолжительность его от нескольких часов до нескольких суток. Примордии образуются в стого заданной последовательности ( филлотаксис).

Верхушечные клетки листового примордия делятся особенно активно, превращая листовой бугорок в выступ. Этот выступ состоит в основном из клеток главной жилки и черешка. По краям главной жилки начинает функционировать краевая (маргинальная) меристема. ЕЕ клетки делятся антитклинально, что приводит к увеличению поверхности листа. После 8-9 циклов делений клетки маргинальной меристемы переходят к растяжению. Рост листьев ограничен. Незначительный рост наблюдается еще благодаря вставочной меристеме, находящейся в основании листовой пластинки.

Рост и развитие стебля. Апекальные клетки корпуса, прокамбий, индуцированный листовыми примордиями, формируют основные ткани стебля. Рост клеток растяжением, индуцируется ауксином и гиббереллином. Утолщение стебля происходит за счет деятельности камбия и феллогена.

Апекс корня подразделяется на три зоны - дерматоген, периблему и плерому. Производные инициальных клеток дерматогена дифференцируются в корневой чехлик и эпиблему, периблема – в кору, плерома – в центральный цилиндр.Апекс корня не образует боковых органов. Образование боковых корней происходит в зоне всасывания и проведения. Локально клетки перицикла делятся и образуется бугорок, направленный к периферии. Этот бугорок представляет собой апекс корня второго порядка. Нормальный рост и развитие корня поддерживаются цитокининами и ауксином.

Морфогенез корня. В апикальной меристеме корня образуются боковые органы. Корневая меристема формирует ткани корня и корневой чехлик, защищающий корень при его продвижении в почве.

Кроме активно делящихся клеток, в меристеме корня находится группа клеток, расположенных между корневым чехликом и активной меристематической зоной, для которых характерны редкие деления клеток – «покоящийся центр», эти клетки восстанавливают численность специализированных инициальных клеток при их естественном изнашивании или повреждении.Изолированные кончики корней однодольных растут при добавлении ауксина, а у многих двудольных кончики корней развиваются и без экзогенных фитогормонов.

В первичном строении корня различают несколько тканей:

1.корневой чехлик (клетки его наружных слоёв секретируют полисахаридную слизь и слущиваются при перемещении корня в почве) 2.апикальная меристема (клетки делятся редко, более медленный синтез ДНК, РНК и белков, меньшее число плазмодесм с соседними клетками) 3.ризодерма (однослойная ткань, покрывающая корень снаружи. Основная функция-поглощение воды и минеральных веществ) 4.первичная кора 5.эндодерма (внутренний слой клеток, граничащий с центральным цилиндром) 6.перицикл 7.проводящие ткани.

Ростовые корреляции – это зависимость роста и развития одних органов от других.

Самый простой тип корреляций связан с питанием. Гетеротрофные органы (корни) зависят в своем развитии от побега, обеспечивающего органическими веществами. Развитие побега зависит от корня, поставляющего воду и минеральные вещества.

Основную роль в корреляциях играют фитогормоны. Например, апекальное доминирование – это коррелятивное торможение верхушкой побега или корня развития пазушных почек или боковых корней. Оно происходит из-за того, что содержание ауксина в апексе выше, чем в других частях растения и он обеспечивает аттрагирующее действие апекса. При удалении апекса происходит рост и развитие боковых органов.

Верхушка корня контролирует ростовые процессы в побеге. В частности, цитокинин, синтезируемый в кончике корня, контролирует образование листовых примордиев, формирование проводящих пучков стебля и листьев.

4. Влияние внешних условий на рост растений. Периодичность роста, типы покоя.

1. Свет. Рост растений может происходить как на свету, так и в темноте. Зеленые части растений, выросшие в темноте, приобретают ряд морфологических особенностей, отличающих их от растений, выросших на свету. У них, как правило, длинные стебли, листовые пластинки недоразвиты, недоразвиты устьица, механические ткани. Растения лишены хлорофилла и имеют бледно-желтый цвет из-за присутствия каротина. На рост растения влияет не только интенсивность света, но и его спектральный состав. Выявлено, что коротковолновая часть спектра стимулирует процессы клеточного деления, но задерживает вторую фазу роста – растяжение. Красный свет, наоборот, несколько подавляет клеточное деление и стимулирует линейный рост органа. Этиоляция – важная приспособительная реакция проростков растений, находящихся в почве, за счет быстрого вытягивания гипокотиля побег выносится на поверхность, на свет.

2. Температура. В пределах от 0 до 35оС влияние температуры подчиняется правилу Вант-Гоффа, но выше 35 – 40оС скорость роста снижается. Установлено, что растения интенсивнее растут в ночное время суток, оказывается, что смена температур повышенной дневной на пониженную ночную является благоприятной для роста растений. Это явление называется термопериодизм. Объяснение этому явлению заключается в том, что при понижении температуры активно работают ферменты, катализирующие распад крахмала до сахаров, которые передвигаются к точкам роста, благодаря чему скорость роста увеличивается.

3. Содержание воды. Снижается скорость деления клеток, т.е. скорость эмбриональной фазы, а особенно скорость фазы растяжения, т.к. она основана именно на поступлении воды. Насыщенность клеток водой называют гидратурой.

4. Газовый состав атмосферы и почвы. Для роста растений необходимо присутствие кислорода, но рост растений мало страдает при понижении концентрации кислорода, т.к. включаются адаптационные механизмы, благодаря которым используется кислород нитратов, сульфатов (нитратное, сульфатное дыхание).

5. Избыток СО2 приводит к увеличению растяжимости клеточных стенок и кратковременному усилению роста тканей. Это связано с тем, что избыток СО2 повышает кислотность стенок, что вызывает активацию гидролаз и повышение эластичности клеточных стенок, что ведет к повышению скорости роста растяжением.

6. Минеральное питание. Необходимо достаточное снабжение всеми компонентами минерального питания, но особая роль принадлежит азоту, в связи с тем, что образование двух основных гормонов (ауксина и цитокинина), регулирующих процессы роста, зависит от содержания азота.

Околосуточные ритмы тесно связаны с суточными колебаниями освещенности, температуры и других факторов среды, причем сложившаяся периодичность физиологических процессов некоторое время сохраняется у растений и при изменении условий среды, вследствие чего эти ритмы названы эндогенными. Благодаря эндогенным ритмам живые организмы хорошо приспособлены к тем условиям, в которых они обитают, мало завися от случайных погодных флуктуации. Кроме суточной периодичности рост растений подвержен изменениям в течение сравнительно длительных периодов, например сезонной периодичности. Такая периодичность выражается в образовании годичных колец в древесине растений умеренного пояса, у которых рост стволов в толщину, достигая максимума в летнее время, прекращается осенью.

Покой – это физиологическое состояние растений, когда все жизненные процессы заторможены. У растений периоды роста чередуются с периодами покоя. Различают покой вынужденный и физиологический. Вынужденный покой обусловлен только факторами внешней среды, например, низкими температурами в зимнее и ранневесеннее время. Физиологический покой обусловлен эндогенными причинами.

Переход в состояние покоя связан со снижением общего уровня гидрофильности коллоидов и обводненности цитоплазмы. Происходят процессы обогащения цитоплазмы жирами и фосфатидами. В результате этих явлений понижается проницаемость тканей, усиливаются гидролитические и ферментативные процессы. Состояние покоя регулируется соотношением фитогормонов: цитокинины и гиббереллины выводят из состояния покоя.

5. Ростовые движения (геотропизм, фототропизм, хемотропизм и др.). Настии.

Растительный организм обладает способностью к определенной ориентировке своих органов в пространстве. Реагируя на внешние воздействия, растения меняют ориентировку органов. Различают движения отдельных органов растения, связанные с ростом - ростовые и с изменениями в тургорном напряжении отдельных клеток и тканей - тургорные. Ростовые движения, в свою очередь, бывают двух типов: тропические движения, или тропизмы,— движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.); настические движения, или настии,— движения, вызванные общим диффузным изменением какого-либо фактора (света, температуры и др.). В зависимости от фактора, вызывающего тропические движения, различают геотропизм, фототропизм, хемотропизм, тигмотропизм, гидротропизм. Геотропизм - движения, вызванные односторонним влиянием силы тяжести. Если положить проросток горизонтально, то через определенный промежуток времени корень изгибается вниз, а стебель - вверх. Фототропизм - движения, вызванные неравномерным освещением разных сторон органа. Если свет падает с одной стороны, стебель изгибается по направлению к свету - положительный фототропизм. Корни обычно изгибаются в направлении от света - отрицательный фототропизм. Хемотропизм - это изгибы, связанные с односторонним воздействием химических веществ. Хемотропические изгибы характерны для пыльцевых трубок и для корней растений. Гидротропизм - это изгибы, происходящие при неравномерном распределении воды. Для корневых систем характерен положительный гидротропизм. Аэротропизм - ориентировка в пространстве, связанная с неравномерным распределением кислорода. Аэротропизм свойствен в основном корневым системам. Тигмотропизм — реакция растений на одностороннее механическое воздействие. Тигмотропизм свойствен лазающим и вьющимся растениям. Настические движения бывают двух типов: эпинастии - изгиб вниз и гипонастии - изгиб вверх. В зависимости от фактора, вызывающего те или иные настические движения, различают термонастии, фотонастии, никтинастии и др. Термонастии - движения, вызванные сменой температуры. Ряд растений (тюльпаны, крокусы) открывают и закрывают цветки в зависимости от температуры.. Фотонастии - движения, вызванные сменой света и темноты. Цветки одних растений (соцветия одуванчика) закрываются при наступлении темноты и открываются на свету. Никтинастии («никти» - ночь) - движения цветков и листьев растений, связанные с комбинированным изменением, как света, так и температуры. Примером являются движения листьев у некоторых бобовых, а также у кислицы. К ростовым движениям относятся и круговые движения концов молодых побегов и кончиков корней относительно оси. Такие движения называют круговые нутации. Примерами являются движения стеблей вьющихся растений (хмель), усиков лазящих растений. Тургорные движения. К ним относятся никтинастические движения листьев. Так, для листьев многих растений характерны ритмические движения - у клевера наблюдается поднятие и складывание листочков сложного листа ночью. Сейсмонастии - движения, вызванные толчком или прикосновением, например движение листьев у венериной мухоловки или у стыдливой мимозы. Автонастии - самопроизвольные ритмические движения листьев, не связанные с какими-либо изменениями внешних условий.

ФИТОГОРМОНЫ

  1. Открытие и общие свойства фитогормонов. Работы Ч. Дарвина, Бойсена-Иенсена, Холодного, Вента. Гормональная теория тропизмов.

Фитогормоны — низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции. Гормоны в органах - ауксинами богаче всего верхушечные меристемы стебля, гиббереллинами и флоригеном — листья, цитокининами — корни и созревающие семена. Фитогормоны регулируют многие процессы жизнедеятельности растений: прорастание семян, рост, дифференциацию тканей и органов, цветение, созревание плодов и т. п. Химические соединения, которые вырабатываются в одних частях растений и оказывают своё действие в других, проявляют свой эффект в исключительно малых концентрациях, обладают (в отличие от ферментов) обычно меньшей специфичностью действия на процессы роста и развития, что объясняется разным состоянием работы генов воспринимающих клеток, от которого зависит результат действия гормона, а также разным соотношением между собой различных фитогормонов (гормональным балансом). Эффект фитогормонов в значительной мере определяется действием других внутренних и внешних факторов. Гормоны разных растений могут отличаться по химической структуре, поэтому они сгруппированы на основании их эффекта на физиологию растений и общему химическому строению. Пять групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, газ этилен. В последнее время к ним относят брассины (брассиностероиды). Условно можно отнести первые три группы—ауксины, гиббереллины и цитокинины и частично брассины — к веществам стимулирующего характера, тогда как абсцизовую кислоту и этилен — к ингибиторам.

Ч. Дарвин описал опыты по изучению изгибания проростков злака по направлению к свету. Было установлено, что свет воспринимается только самой верхушкой колеоптиля, тогда как изгиб происходит в нижележащей зоне, которая сама по себе нечувствительна к свету.

П. Бойсен-Йенсен установил, что если отрезать верхушку колеоптиля, а затем снова насадить ее так, чтобы между верхушкой и отрезанной частью поместилась бы прослойка из желатина или агара, то при освещении получатся такие же изгибы, как у нормальных колеоптилей. Следовательно, фототропическое раздражение передается через прослойку агара или желатина. Значит, верхушка проростка поставляет некое химическое вещество, и его перемещение определяет изгиб колеоптиля при одностороннем освещении.

Н. Г. Холодный, повторяя и модифицируя опыты Ч. Дарвина, предположил, что при геотропических изгибах важно наличие верхушки корня. В ней тоже образуется гормон, который перемещается от верхушки в нижележащую зону корня. Н. Г. Холодный и Ф. Вент дали объяснение изгибам проростков и корней. Они создали независимо друг от друга гормональную теорию тропизма и роста растений. Суть ее в следующем: под влиянием одностороннего освещения гормон смещается на затененную сторону проростка. Повышение его концентрации вызывает усиление роста, и проросток изгибается по направлению к свету.

Ф. Вент придумал связан оригинальный метод определения основного гормона роста - ауксина. Срезанная верхушка, положенная на агар, способна отдавать ему находящийся в ней гормон. Крошечный кубик из такого агара со стороной всего 2 миллиметра и расположенный на колеоптиле с отрезанной верхушкой только не прямо, а смещенный в сторону вызывает через час рост и искривление колеоптиля овса. По углу искривления судят о концентрации гормона. Чем больше угол, тем больше концентрация гормона

2. Ауксины. Строение, содержание, синтез, распределение в различных частях растений.Окислительный распад. Полярный транспорт.

Ауксины — это вещества индольной природы. Основным фитогормоном типа ауксина является b-индолилуксусная кислота (ИУК). Наиболее богаты ауксинами растущие части растительного организма. Образование ауксинов в большинстве случаев идет в меристематических тканях. Ауксины передвигаются из верхушки побега вниз к его основанию, а далее от основания корня к его окончанию. Таким образом, передвижение ауксинов полярно. Полярное передвижение ауксинов идет по проводящим пучкам со скоростью, значительно превышающей скорость обычной диффузии. Недостаток кислорода, торможение процесса дыхания с помощью различных ингибиторов приостанавливают передвижение ауксинов. Во взрослом дифференцированном растении при высокой концентрации гормона может наблюдаться и неполярное передвижение ауксинов вверх по растению с током воды по ксилеме. Ауксин, образующийся в кончике корня, может, по-видимому, передвигаться на короткие расстояния вверх, в зону растяжения. Основным источником для образования b-индолилуксусной кислоты (ИУК) является аминокислота триптофан. Синтез ИУК идёт как минимум в три стадии: декарбоксилирование, дезаминирование, окисление. ИУК может синтезироваться из индола и индолглицерофосфата. Именно в апикальной меристеме сосредоточен синтез ауксинов. Содержание ИУК зависит не только от скорости образования, но и от быстроты разрушения. Основным ферментом разрушения ИУК является ИУК-оксидаза (ОИУК). Наряду с ферментативным окислением ИУК большое значение имеет ее разрушение на свету (фотоокисление). Другим путем разрушения ИУК является декарбоксилирование. В клетках присутствует конъюгированный, т. е. связанный ауксина, который, как правило, неактивен. В клетках ауксин содержится в цитозоле и хлоропластах. Основными факторами, влияющими на содержание ауксина в растительных клетках являются следующие: триптофан-зависимый синтез ауксина, триптофан-независимый синтез ауксина, транспорт, окисление и декарбоксилирование, конъюгация. Образование ИУК зависит от снабжения растения азотом, обеспечения растения водой. Освещение уменьшает содержание ауксинов, а затемнение увеличивает. Под влиянием микроорганизмов содержание ауксинов у высших растений заметно возрастает.

3. Ауксины. Физиологическая активность и механизмы действия. Явление апикального доминирования. Практическое использование ауксинов в растениеводстве и биотехнологии.

Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. ИУК стимулирует выход протонов в клеточную стенку и увеличивает ее растяжимость. Под влиянием ауксинов может измениться направление дифференциации клеток. Ауксины, так же как и другие фитогормоны, обусловливают взаимодействие отдельных органов растения (коррелятивный рост). Ауксин обуславливает явление апикального доминирования, проявляющегося в подавляющем влиянии верхушечной почки на рост пазушных. При всех физиологических проявлениях ауксины усиливают поступление воды и питательных веществ (аттрагирующее влияние). Ауксины влияют на распределение питательных веществ в растении. В отсутствие кислорода действие ауксина или не проявляется, или значительно ослабевает. ИУК увеличивает энергетическую эффективность дыхания растений. Под влиянием ИУК возрастает энергетический заряд клетки.ИУК активирует протонную помпу в плазмалемме, что приводит к закислению и разрыхлению клеточной стенки и тем самым способствует росту клеток растяжением. Комплекс ИУК с рецептором транспортируется в ядро и активирует синтез РНК, что в свою очередь приводит к усилению синтеза белков.

С участием ауксина связана регуляция двигательной активности растений, в частности тропизмы и настии. Повышение концентрации ауксина выше оптимальной вызывает торможение роста. Ауксин стимулирует синтез другого фитогормона, ингибирующего рост, этилена. Гормоны типа ауксина вызывают перераспределение питательных веществ в растении.

Ауксин стимулирует развитие бессемянных плодов. Использование, как гербицида. Если ауксинов слишком много, то начинается синтез гормона-антагониста этилена. Этилен угнетает рост побегов и корней в длину и вызывает листопад. При обработке естественными ауксинами (ИУК, ИПВК и др.) начинается их окисление и/или образование конъюгатов.

4. Гиббереллины. Открытие, строение, содержание, транспорт и распределение в различных частях и органах растений. Физиологическая активность и механизмы действия. Практическое применение.

Открытие гормонов растений гиббереллинов связано с изучением болезни ри­са. Японские ученые показали, что эта болезнь вызывается выделением гриба Gibberella fujikuroi. Из выделений этого гриба было получено кристаллическое вещество — гиббереллин. Гиббереллины об­ладают высокой физиологической активностью и являются естественными фитогормонами. По химической структуре это производ­ные дитерпенов — дитерпеноиды, состоящие из четырех изопреновых остатков. Растения на разных этапах онтогенеза могут различаться по набору гиббереллинов, активность которых может быть различной. Гиббереллины могут образовываться в разных, по преимуществу растущих частях растительного организма. Все же основное место синтеза гиббереллинов — это листья. Имеются данные, что гиббереллины образуются в пластидах. По-видимому, гиббереллины существуют в двух формах — свободной и связанной. Нередко наблюдаемое повышение содержания гиббереллинов связано с перехо­дом их из связанной в свободную форму. В отличие от ауксинов гиб­береллины передвигаются из листьев как вверх, так и вниз, как по ксилеме, так и по флоэме. Это пассивный процесс, не связанный с метаболизмом. Образование гиббереллина в хлоропластах идет путем превращения мевалоновой кислоты в геранилгераниол и далее через каурен в гибберелловую ки­слоту. Влияние факторов. Освещение увеличивает содержание гиббереллинов. При выращивании растений на красном свете в них содер­жится больше гиббереллинов по сравнению с выращиванием на синем свете. Улучшение питания растений азотом со­держание гиббереллинов снижает.

Проявлением физиологического действия гибберел­лина является способность резко усиливать рост стебля у карликовых форм растений. Генетическая карлико­вость вызвана изменениями на генном уровне (отсутствие гена который кодирует синтез гиббереллинов) и может быть связана с наруше­ниями в синтезе гиббереллинов. Партенокарпия-образование на растении плодов без оплодотворения

Гиббереллины заметно усиливают вытягивание стебля и у многих нормальных растений. Существует определенная зависимость между скоростью роста стебля растений и содержанием гибберел­линов. Увеличение роста стебля происхо­дит за счет усиления деления клеток и их растяжения. Влияние гиббереллинов на растяжение связано с образованием белка клеточной стенки экстенсина и повышением активности ферментов. Гиббереллины накапливаются в почках при выходе из покоящегося состояния. При выходе семян из покоящегося состояния в них накап­ливаются гиббереллины. При действии гиббереллина возрастает общая масса раститель­ного организма, он способствует не перераспределению пита­тельных веществ, а общему их накоплению. Показано, что гиббереллин усиливает процесс фотосинтетического фосфорилирования, в первую очередь нециклического, и, как следствие, основных продуктов этого процесса — АТФ и НАДФН. Одновременно наблюдается снижение содержания хлорофилла. Следователь­но, под влиянием гиббереллина повышается интенсивность использования еди­ницы хлорофилла, возрастает ассимиляционное число. В темноте гиббереллин воздействует лишь на растяжение клеток, не вызывая возрастания интенсивно­сти их деления .

5. Цитокинины. Природные и синтетические. Открытие, строение, содержание, места синтеза, транспорт и распределение в растениях. Физиологическая активность и механизмы действия. Взаимодействие с другими гормонами.

Учение о цитокининах начинается с открытия полуискусственного продукта – кинетина, который образуется из ДНК при кислотном гидролизе. Природный цитокинин был идентифицирован как зеатин и получен он из неспелых зерновок кукурузы.

Открытие цитокининов связано с обширными исследованиями по выращиванию каллуса, образовавшегося из изолированной ткани сердцевины стебля табака на питательной среде. Было показано, что клетки каллуса в стерильной культуре через определенный промежуток времени прекращают деление. Однако при добавлении к питательной среде производных ДНК, полу­чающихся после ее автоклавирования, деление клеток возобновляется. Все известные ци­токинины — это производные пуриновых азотистых оснований, а именно аденина, в котором аминогруппа в шестом положении замещена различными радикалами.

Соединения цитокининового типа обнаруживаются в растениях не только в свободном состоянии, но и в составе некоторых тРНК. Богаты цитокининами клетки апикальных побегов и меристем корня. Цитокинины образуются глав­ным образом в корнях и пассивно в виде зеатинрибозида пере­двигаются в надземные органы по ксилеме. Вместе с тем имеются данные об образовании цитокининов в семенах (зрелые зародыши) и развивающихся плодах.

Ключевой фермент синтеза цитокининов — изопентенилтрансфераза и назван ipt-ген. Она катализирует синтез зеатина и рибозидзеатина из изопентенилпирофосфата. Изопентениловый остаток может образовываться из мевалоновой кислоты. Содержание цитокининов оп­ределяется скоростью их синтеза и разложения. Распад цитокининов регулиру­ется ферментом цитокининоксидазой. Имеются сведения, что улучшение питания растений азотом усиливает образование цитокининов.

Основное место синтеза цитокининов – корни; однако в последнее время получены данные о том, что синтез цитокининов может происходить и в семенах (семена гороха).

Из корней цитокинины пассивно транспортируются в наземные органы по ксилеме.

Физиологические проявления действия цитокининов

Действие цитокининов многофункционально. Цитокинины в первую очередь оказывают влияние на деление клеток, хотя в некоторых случаях могут регулировать и их растяжение. Цитокинины регулируют последнюю стадию деления, а именно цитокинез (деление самой клетки). Показано, что цитокинины стимулируют экспрессию специфического циклина и ускоряют переход от фазы g2 к митозу. Кроме того, они активируют рост растяжением изолированных листьев и семядолей у двудомных растений. Цитокинины также оказывают влияние на направление дифференциации клеток и тканей. Цитокинины способствуют пробуждению и росту боковых почек. Цитокинины задерживают старение листьев. Цитокинины не только задерживают распад белка и хлорофилла, но и стимулируют синтез хлоропластных белков, оказывают влияние на ультраструктуру хлоропластов. Под их влиянием усиливается интенсивность фотофосфорилирования, возрастает активность сопрягающего фактора (АТФ-синтаза) в хлоропластах, содержание АТФ увеличивается. Цитокинины усиливают передвижение веществ к обогащенным ими тканям (аттрагирующее влияние). Аминокислоты и углеводы перетекают из необработанной половины листа к половине, которая обогащена кинетином. Усиливая поглощение калия замыкающими клетками устьиц, цитокинины способствуют их открыванию. Цитокинины влияют на азотный обмен растений, стимулируя синтез белка-фермента нитратредукатазы. Цитокины–играют важную роль в регуляции разнообразных процессов развития растений, активность меристем, задержку старения листьев, стимулирование развития боковых почек и прорастания семян. Цитокинины связываются с мембранными рецепторами, вызывая каскад передачи сигнала, приводящего к активации специфических цитокинин-чувствительных генов. Цитокинины позитивно влияют на активность апикальных меристем побега, формирование примордиев листьев и развитие сосудов побега. Одним из путей инактивации цитокининов является окислительное отщепление изопреноидной боковой цепи, катализируемое ферментом цитокининдегидрогеназой (или оксидазой)флавопротеином, содержащим ковалентно-связанный кофактор ФАД.

6. Фитогормоны – ингибиторы роста: абсцизовая кислота и этилен. Строение, места синтеза, содержание и распределение в растениях. Физиологическая активность и механизмы действия.

Открытие абсцизовой кислоты (АБК) связано с изучением двух явлений — покоя почек и опадения листьев и плодов. По химическому строению АБК представляет оптически активный сесквитерпеноид, состоящий из трех остатков изопрена. Активной является S(+)-форма. АБК, подобно гиббереллину, с которым по химической структуре имеет много общего, образуется из мевалоновой кислоты. Существуют два пути биосинтеза абсцизовой кислоты из мевалоновой кислоты: прямой путь, через фарнезилпирофосфат (ФПФ) и непрямой, или каротиноидный. Во втором случае АБК образуется в результате деградации каротиноидов, при этом из ксантофилла образуется ингибитор ксантоксин, который затем превращается в АБК. Основными органами синтеза АБК являются листья и реже корни. АБК накапливается преимущественно в хлоропластах и в меньших количествах, в цитозоле, в вакуолях. Транспорт АБК осуществляется в восходящем и в нисходящем направлении, как по флоэме, так и по ксилеме. АБК содержится в различных органах растений, особенно в состоянии глубокого покоя. Она обнаружена в почках, сухих семенах, в клубнях картофеля. Показано, что содержание АБК резко повышается при недостатке азота и, особенно при водном дефиците. Неблагоприятные воздействия повышают содержание АБК.

Физиологические проявления действия АБК тормозит процессы роста, индуцированные ИУК, цитокинином и гиббереллином. Накопление АБК приводит к снижению фотосинтетического фосфорилирования и интенсивности фотосинтеза. Увеличение содержания АБК тормозит рост пазушных почек при апикальном доминировании, задерживает прорастание семян, влияет на переход в покоящееся состояние семян, почек, клубней. АБК регулирует опадение листьев и плодов. АБК рассматривают как антистрессорный фактор, усиливающий адаптацию растений к различным неблагоприятным воздействиям. Перераспределение АБК: она транспортируется из клеток мезофилла в замыкающие клетки устьиц. При этом возрастает проницаемость мембран, что приводит к утечке ионов К+ из замыкающих клеток, осмотическая концентрация снижается и вода выходит, устьица закрываются.

Обработка АБК способствует повышению устойчивости к засухе, затоплению, высоким и низким температурам, морозу, солям. Это связано с действием АБК на водный баланс растений, фотосинтез и дыхание, обмен липидов, стабилизацией цитоскелетных структур, модификацией проницаемости клеточных мембран, торможением роста. АБК ускоряет синтез протекторных белков, определяющих устойчивость к неблагоприятным условиям.

Этилен — это газ. Химическая формула СН2= СН2. Этилен отнесен к фитогормонам сравнительно недавно. Первоначальным предшественником образования этилена является аминокислота метионин. В образовании этилена участвует ряд ферментов, из которых особое значение имеет аминоциклопропанкарбосинтаза (АЦК-синтаза), катализирующая образование 1-аминоциклопропан-1-карбоновой кислоты (АЦК) — непосредственного предшественника этилена. Активность этого фермента возрастает в процессе созревания плодов. Этилен образуется в созревающих плодах, стареющих листьях, в проростках до того, как они выходят на поверхность почвы. В растении этилен определяют с помощью биотестов или газовой хроматографии.

Физиологические проявления действия этилена это регуляция процессов созревания плодов. Этилен способствует увеличению толщины, но уменьшает рост в длину стебля, а также клеток, что связано с изменением ориентации микрофибрилл целлюлозы. Способствует образованию отделительного слоя и опадению листьев и плодов, оно связано с появлением ферментов, растворяющих клеточные стенки, нарушением связей между клетками. Этилен ускоряет процессы старения, тормозит рост почек, накапливается в покоящихся органах. Ауксин в повышенной концентрации вызывает образование этилена и, как следствие, торможение ростовых процессов. Этилен и высокие концентрации ауксина вызывают эпинастию листьев, т. е. изменение угла наклона листа по отношению к стеблю в результате чего листья опускаются. Этилен влияет на пол цветков, вызывая образование женских цветков у однодомных растений. При затоплении растений этилен индуцирует образование корней на стебле и формирование аэренхимы, индуцирует образование на стебле адвентивных корней(участвуют в снабжении побегов веществами, необходимыми для нормального функционирования). Этилен участвует в реакции растений на повреждающие воздействия. Под действием этилена в растении синтезируются белки-ферменты, такие как хитиназа и глюканаза, которые разрушают клеточную стенку патогенов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]