Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
36
Добавлен:
17.03.2015
Размер:
5.33 Mб
Скачать

1.4. Технологические характеристики

Технологическими характеристиками процессов ЭХО являются производительность, точность размеров и полученной фор

мы, а также шероховатость обработанных поверхностей. К факторам, влияющим на технологические характеристики процессов ЭХО, относят объемный электрохимический эквивалент (Kv) обрабатываемого металла, состав применяемого электролита, его удельную электропроводность (х), напряжение на электродах (Uэ), анодную плотность тока (i), коэффициент выхода металла по току (п), межэлектродный промежуток (а) и технологический припуск (z).

Производительность. Производительность отделочных процессов ЭХО характеризуется скоростью обработки, выражаемой в различных единицах. Так, при электрохимическом травлении скорость обработки имеет размерность мм/мин и в зависимости от вида обрабатываемого металла, состава электролита и других факторов колеблется от 0,05 до 0,2 мм/мин. Производительность электрохимического полирования определяют по продолжительности процесса, которая составляет, например, 5—10 мин при полировании углеродистых сталей и 2—3 мин при полировании алюминия. Производительность электрохимического абразивного полирования оценивают площадью поверхности, обработанной в единицу времени. Например, электрохимическое абразивное полирование листов из нержавеющей стали Х18Н9Т с исходной шероховатостью поверхности 1,25 мкм по Ra до шероховатости 0,1 мкм Rz при оптимальных для данного материала состава электролита и плотности электрического тока выполняют с производительностью 1 м2/ч. При электрохимической жидкостно-абразивной обработке производительность в основном зависит от размеров удаляемых заусенцев, состава электролита, материала деталей и вида применяемых абразивных материалов. Например, удаление заусенцев размером 0,2— 0,3 мм на деталях из конструкционных сталей занимает в среднем 1 ч при прочих оптимальных параметрах обработки. Производительность электрохимического хонингования и суперфиниширования оценивают в мм/мин. Хонингование, например, отверстий диаметром 50 мм во втулках из конструкционных сталей при глубине отверстия 80 мм производят со скоростью 0,05— 0,07 мм/мин; производительность суперфиниширования таких втулок составляет примерно 0,01 мм/мин. Приведенные данные для электрохимического хонингования и суперфиниширования справедливы при условии, если обработку производят одновременно по всей глубине отверстия, т. е. длина бруска-катода при этом равна или больше глубины обрабатываемого отверстия детали. При хонинговании и суперфинишировании очень глубоких отверстий, когда брусок-катод имеет меньшую длину, чем глубину отверстия, его последовательно перемещают вдоль обрабатываемой поверхности. При этом время обработки отверстий увеличивается. Суперфиниширование по сравнению с хонин-

Из уравнения видно, что с увеличением времени обработки т, т. е. с увеличением знаменателя, скорость электрохимического растворения уменьшается.

При электрохимическом формообразовании подвижными электродами (рис. 1.23) межэлектродный промежуток а стремятся поддерживать постоянным, что обеспечивается перемещением электрода-инструмента или заготовки относительно друг друга со скоростью рабочей подачи уэ, равной скорости vэх.р.

Линейную скорость (мм/мин) электрохимического растворения при ЭХО с подвижными электродами определяют по формугованием при прочих равных условиях процесса обработки длится в несколько раз дольше.

Производительность размерного электрохимического формообразования характеризуется скоростью анодного растворения металла, выражаемой в линейных (мм/мин) или в объемных (мм3/мин) единицах.

При ЭХО с неподвижными электродами-инструментами скорость электрохимического растворения металла заготовки по мере съема технологического припуска г (рис. 1.22) понижается. Это происходит потому, что межэлектродный промежуток ао, установленный в начале обработки (рис. 1.22, а), по мере съема металла заготовки постепенно увеличивается к концу обработки до значения ак (рис. 1.22,6), а с увеличением межэлектродного промежутка скорость электрохимического растворения соответственно снижается.

Линейную скорость (мм/мин) электрохимического растворения при ЭХО с неподвижными электродами определяют по фор-

Общим для обоих случаев электрохимического формообразования с подвижными и неподвижными электродами является то, что производительность таких процессов увеличивается с повышением напряжения, подводимого к электродам, удельной электропроводности электролита и коэффициента выхода металла по току, а снижается — с увеличением межэлектродного промежутка.

Объемный электрохимический эквивалент Kv для каждого вида металла имеет определенное значение и поэтому не влияет на производительность размерной ЭХО. Изменение же параметров Uэ, х, п, а до определенных предельных значений может существенно снизить или повысить производительность размерного электрохимического формообразования.

Так, напряжение, подводимое к электродам, можно повысить до значений, при которых наступает электрический пробой межэлектродного промежутка. При этом с возникновением электрического пробоя образуется электрический разряд, называемый дугой. Под действием этой дуги происходит нежелательное локальное выплавление электрода-инструмента и заготовки иногда глубиной до 10 мм. Наибольшее предельно допустимое напряжение на электродах взаимно согласуется с межэлектродным промежутком, скоростью прокачки и степенью очистки электролита. С уменьшением промежутка и скорости прокачки электролита допустимое напряжение также уменьшается. С целью исключения образования дуги электрохимическое формообразование ведут, как правило, при напряжении на электродах 5—12 В; при обработке заготовок из титановых сплавов его значение повышают до 17—20 В. В некоторых случаях напряжение на электродах повышают до 30 В, например при больших межэлектродных промежутках (2—3 мм). Чтобы снизить производительность размерной ЭХО, напряжение на электродах принимают равным 2—2,5 В; при меньших значениях напряжения анодное растворение прекращается. Это происходит потому, что часть (0,5—2 В) подводимого к электродам напряжения не участвует в анодном растворении металла, а расходуется на нейтрализацию суммарного потенциала напряжения анода и катода. Установление истинных значений потенциалов анода и катода при конкретных режимах ЭХО выполняют посредством специфичных экспериментов, осуществить которое в производственных условиях не всегда возможно. Поэтому на практике при определении технологических параметров ЭХО (производительности и точности) в соответствующих расчетных уравнениях используют напряжение на электродах Uэ, на 1,25 В меньшее требуемого значения.

Электропроводность электролита, зависящая от его состава, концентрации и рабочей температуры, также влияет на производительность размерной электрохимической обработки — с по

вышением удельной электропроводности увеличивается производительность. Наибольшей электропроводностью среди водных растворов солей обладает 50%-ный раствор азотнокислого аммония NH4 N03 в воде. Его удельная электропроводность при рабочей температуре 15°С составляет 36,3 См/м. Иногда при относительно небольшой скорости обработки используют электролиты, имеющие меньшую электропроводность, например 5%-ный раствор NaCl в воде с удельной электропроводностью 4,1 См/м.

Во всех справочных таблицах, в том числе и в табл. 1.2, значения удельной электропроводности электролитов характеризуют состояние электролита перед зоной обработки. Однако при выполнении электрохимических формообразующих процессов

обработки, характеризующихся высокой анодной плотностью тока, электролит по мере протекания через межэлектродный промежуток нагревается и насыщается пузырьками водорода и кислорода. В результате этого удельная электропроводность электролита, находящегося в межэлектродном промежутке и непосредственно влияющая на технологические параметры обработки, несколько отличается от удельной электропроводности перед зоной обработки. Действительное значение удельной электропроводности в межэлектродном промежутке, как правило, меньше указанных в таблицах. Поэтому при определении технологических параметров ЭХО в соответствующих расчетных уравнениях используют пониженные (на 5—20%) значения удельной электропроводности по сравнению с указанными в таблицах. При длине протекания электролита в межэлектродном промежутке, равной 5—30 мм, табличные значения удельной электропроводности, вводимые в уравнения, уменьшают на 5—10%, при длине 30—80 мм —на 10—15% и далее до 20%.

Наибольшее влияние на коэффициент выхода металла по току оказывает сочетание таких факторов, как марка обрабатываемого металла и применяемый электролит. Например, при обработке хромистых сталей 2X13, 15X11МФ с использованием раствора хлористого натрия любой концентрации температура, значение рН и скорость прокачки электролита через межэлектродный промежуток существенно не изменяют коэффициента выхода металла по току. В этих условиях обработки влияние анодной плотности электрического тока на коэффициент выхода

металла по току также незначительно (рис. 1.24, кривая 1). В то же время при обработке хромистых сталей указанных марок в 30%-ном растворе азотнокислого натрия NaN03 коэффициент выхода металла по току, а следовательно, и производительность обработки существенно зависят от плотности тока на аноде (рис. 1.24, кривая 2). В этих условиях обработки повышение анодной плотности от 10 до 20 А/см2 приводит к увеличению коэффициента выхода металла по току примерно в 4 раза (с 0,05 до 0,22). При этом рабочая температура, значение рН и скорость прокачки электролита через межэлектродный промежуток оказывают более существенное влияние на коэффициент выхода металла по току не непосредственным путем, а через изменение анодной плотности электрического тока.

С увеличением рабочей температуры электропроводность электролита повышается и соответственно увеличивается плотность тока на аноде. Повышение скорости прокачки электролита в межэлектродном промежутке способствует более интенсивному удалению из зоны обработки продуктов растворения, что также повышает электропроводность слоя электролита в межэлектродном промежутке. Обратное, т. е. снижение электропроводности, наблюдается при повышении значения рН более 8,5; при этом анодная плотность электрического тока резко снижается, а следовательно, падает и производительность обработки.

Коэффициент выхода металла по току при определенных сочетаниях таких параметров, как марка обрабатываемого металла, состав электролита, его температура, значение рН, плотность электрического тока и скорость прокачки электролита через межэлектродный промежуток, может находиться в пределах от 0,01 до 1,0.

Межэлектродный промежуток при электрохимическом формообразовании не должен быть меньше того значения, при котором обеспечивается истечение электролита с заданной скоростью и соответственно своевременное и качественное удаление продуктов растворения из рабочей зоны. Значение этого промежутка при размерной ЭХО может составлять от 0,05 мм при площади рабочей части электрода-инструмента около 5 мм2 до 0,4—0,5 мм при площади последнего порядка 105мм2.

Сравнение этих двух вариантов расчета показывает, что линейные скорости формообразования при различных значениях параметров обработки могут резко отличаться (в данном случае примерно в 40 раз). С увеличением линейной скорости анодного растворения пропорционально возрастает и объемный съем металла; однако последнее может происходить не только за счет увеличения линейной скорости анодного растворения, но и при одновременной обработке нескольких заготовок или одной заготовки с большой площадью обрабатываемой поверхности.

Производительность а н о д н о-м еханической отрезки выражается в мм2/мин и в зависимости от технологической схемы отрезки может изменяться в довольно широких пределах— от 1500 до 4000 мм2/мин. В данном случае скорость отрезки при заданной схеме обработки и ее определенных параметрах будет зависеть от толщины заготовки. Так, если производительность анодно-механической отрезки составляет 1500 мм2/мин, то линейная скорость обработки при толщине заготовки 10 мм равна 150 мм/мин, а при толщине 100 мм — 15 мм/мин.

При электрохимическом шлифовании абразивными кругами и электрохимической заточке алмазными кругами производительность обработки отражает характер сочетания двух процессов: электрохимического и механического, воздействующих на обрабатываемую заготовку. Так же как и при выполнении размерной ЭХО, доля металла, удаляемого за счет электрохимического растворения, возрастает по мере увеличения силы тока и коэффициента выхода металла по току. Повышение силы тока осуществляют за счет увеличения напряжения на электродах и уменьшения межэлектродного промежутка. Последнее достигается увеличением усилия прижима электрода-инструмента к заготовке или, наоборот, заготовки к электроду-инструменту При этом абразивные зерна, находящиеся в электролите, глубже врезаются в металл заготовки, повышая тем самым долю металла, снимаемую при механическом резании. Одновременно рабочая поверхность электрода-инструмента приближается на определенное расстояние к обрабатываемой поверхности заготовки, уменьшая при этом значение межэлектродного промежутка. Если при увеличении усилия прижима электрод-инструмент коснется обрабатываемой поверхности заготовки, то процесс электрохимического анодного растворения на этом участке полностью прекратится.

Напряжение на электродах изменяют в пределах 5—10 В; при больших значениях напряжения происходит электрический пробой, что приводит к изнашиванию электрода-инструмента.

Сила тока I при электрохимическом шлифовании и заточке зависит также от площади контакта рабочей части электрода-инструмента и обрабатываемой поверхности заготовки. С увеличением площади контакта возрастает сила тока, а следовательно, и производительность, т. е. количество растворяемого металла в единицу времени. Так, при электрохимическом шлифовании больших поверхностей торцом круга чашечной формы при припуске на обработку 0,3—0,7 мм производительность равна 1500—2000 мм3/мин; в этих же условиях обработки, но при шлифовании периферией круга, т. е. при меньшей площади контакта, объемный съем металла составит 500—800 мм3/мин.

Производительность электрохимической заточки алмазными кругами на 20—30% ниже, чем производительность электрохимического шлифования, но в несколько раз выше по сравнению с производительностью алмазного шлифования, например твердых сплавов.

При э л е к т р о э р о з и о н н о-х и м и ч е с к о й обработке на ее производительность оказывают влияние те же факторы, что и на размерную ЭХО. Однако существенным фактором является то, что в этом случае изменением значения импульсного напряжения Uим увеличивают или уменьшают долю эрозионного съема металла и соответственно производительность обработки. Производительность электроэрозионно-химического формообразования отверстия с площадью обработки 100 мм2 при использовании раствора NaCl и Uим = 25-30 В составляет 35— 40 мм/мин.

Точность обработки. Под точностью обработки понимают степень приближения размеров обработанных деталей к заранее установленным чертежом или другой технической документацией номинальным значениям.

Для получения детали с заданным номинальным размером Н (рис. 1.25, а) с заготовки снимают определенный слой металла — припуск z. При этом совершают процесс формообразования при одном и том же размере X и межэлектродном промежутке, равном заданному номинальному значению аH. Под номинальным значением ан понимают межэлектродный промежуток, который должен образоваться после определенного времени обработки при постоянных параметрах процесса Uэ, х, п при ЭХО с неподвижными электродами-инструментами и Uэ, х, п, vэ с подвижными электродами. Однако указанные параметры ЭХО практически изменяются в процессе обработки в определенных пределах. Это приводит к тому, что фактический межэлектродный промежуток ак, образовавшийся после обработки, отличается от ан. Разницу между номинальным (ан) и фактическим (ак) значениями межэлектродного промежутка называют погрешностью Да. При акнразмер Я детали окажется меньше заданного номинального значения, а при акн на детали остается неудаленная часть припуска, равная Да; при этом размер Н детали превысит заданное номинальное значение.

Если заготовка имеет неравномерный припуск, т. е. размер его на разных участках заготовки неодинаков, то различают максимальный и минимальный припуски (zmax и zmin). Разность между этими значениями (рис. 1.25, б) называют погрешностью припуска Azн. Расстояние между выступающей частью поверхности заготовки и обрабатывающей поверхностью электрода-инструмента называют минимальным межэлектродным промежутком amin, а расстояние между заниженной частью той же поверхности и поверхностью электрода-инструмента — максимальным межэлектродным промежутком атaх.

Известно, что анодное растворение металла протекает более интенсивно на участках заготовки с amin, чем на участках, более удаленных от обрабатывающей поверхности электрода-инструмента. Если Zmin относительно мал, а z,nах относительно велик, то после обработки на детали остается неудаленная часть максимального припуска Zmax. Эта погрешность AzK обусловлена неравномерностью припуска по всей обрабатываемой поверхности в начале обработки. Погрешность Да влияет на точность размеров детали, а погрешность Az одновременно с этим — и на точность геометрической формы детали. Оценивая допустимое значение каждой из указанных погрешностей, учитывают сумму всех погрешностей, возникающих в процессе обработки, которая не должна превышать установленное чертежом поле допуска на размер детали Н, т. е. АН.

Рассмотренные погрешности Aа и Az свойственны всем процессам ЭХО, однако наибольшее влияние они оказывают на точность формообразующих процессов; при отделочных опера

циях влияние указанных погрешностей на точность размеров деталей практически незначительно.

При выполнении отделочных операций над обработанной деталью, а не над заготовкой, как в первом случае, требуется сохранить ее форму, а также размеры в заданном поле допуска АН. Это требование обеспечивают за счет значительного увеличения межэлектродного промежутка. На практике межэлектродный промежуток при электрохимическом травлении и полировании доходит до 500 мм, при электрохимической жидкостно-абразивной обработке — до 200 мм, а при электрохимическом абразивном полировании — до 50 мм. При таких значениях межэлектродного промежутка плотность тока на аноде выравнивается, что обеспечивает равномерный съем металла со всех участков детали независимо от формы обрабатываемых поверхностей. Таким образом, при выполнении отделочных операций, когда снимаемый слой металла, как правило, равен сотым долям миллиметра, возможное изменение поля допуска АН на размер весьма незначительно. Даже при неблагоприятных сочетаниях параметров обработки это изменение может составить не более 30% снимаемого слоя металла, т. е. тысячные доли миллиметра.

При выполнении формообразующих операций к указанным погрешностям Аа и Az добавляются погрешности, вызванные упругими деформациями как самого станка, так и элементов крепления заготовки и электрода-инструмента. Эти деформации возникают под действием гидродинамических сил в результате прокачки электролита через межэлектродный промежуток и других факторов.

Влияние параметров процесса ЭХО на значение межэлектродного промежутка, а следовательно, и на Аа более наглядно видно, если рассмотреть зависимость межэлектродного промежутка от параметров, входящих в следующие выражения.

Для снижения Да при формообразующих операциях необходимо стабилизировать параметры ЭХО, так как с повышением

требований к точности размеров возрастают и требования к степени стабилизации параметров электрохимического формообразования. Например, если при размерной ЭХО с подвижными электродами, выполняемой без стабилизации ее параметров, погрешность Аа находится в пределах 0,2—0,5 мм, то для уменьшения погрешности Аа до 0,05—0,1 мм необходимо стабилизировать параметры обработки в следующих пределах: напряжение технологического тока — до ± 1,67%, скорость рабочей подачи электрода-инструмента — 1,0%, температуру электролита— 4,5%, а его электропроводность — 2%. При условии стабилизации этих параметров в пределах 3,2—3,8% экспериментально установлено, что точность исполнения размеров при прочих равных условиях может быть доведена до Аа=0,02мм. Однако такой высокой стабильности параметров ЭХО достичь на практике не удается.

Современные станки для электрохимического копирования и прошивания, выполняющие непрерывную подачу электрода-инструмента, позволяют стабилизировать параметры ЭХО в пределах 5—10%, что ограничивает погрешность Аа в пределах 0,05—0,3 мм. Наименьшее значение Да = 0,05 мм возникает при ЭХО с межэлектродным промежутком, равным 0,1—0,15 мм; Да = 0,3 мм при а = 0,5-0,8 мм. Таким образом, погрешность Да уменьшается не только за счет повышения степени стабилизации параметров ЭХО, но и с выполнением процесса при наименьших значениях межэлектродного промежутка.

Существует несколько режимов ЭХО, позволяющие при выполнении копировальных операций существенно понизить значение Аа. При непрерывном режиме ЭХО для понижения значения Аа в межэлектродный промежуток одновременно с электролитом вводят сжатый воздух или газ. Однако наиболее часто для уменьшения Да используют циклический и импульсно-циклический режимы ЭХО.

Сущность циклического режима заключается в том, что периодически через 5—30 с электрод-инструмент при выключенном напряжении технологического тока движется к заготовке до момента касания с ней, а затем отводится на расстояние, равное ан с одновременным включением напряжения технологического тока. Таким образом, периодически осуществляется коррекция а, в результате чего Да уменьшается.

Импульсно-циклический режим ЭХО дополняет циклический тем, что время подачи на электроды напряжения импульсной формы составляет сотые доли секунды. Это позволяет вести обработку при значениях межэлектродного промежутка в несколько раз меньших, чем при непрерывном или циклическом режиме. Ведение процесса ЭХО на малых значениях а существенно снижает погрешность обработки Аа.

При обработке в циклическом и импульсно-циклическом режимах погрешность Да, возникающая из-за нестабильности параметров процесса (U3, х, п, vэ), не накапливается, а с каждым циклом уменьшается после непосредственного контакта электрода-инструмента с поверхностью заготовки и последующего отвода его на заданный межэлектродный промежуток. Поэтому при обработке в прерывистом режиме требования к стабилизации параметров процесса размерной ЭХО несколько снижаются. Недостатком прерывистого режима по сравнению с непрерывным является несколько меньшая (в 2—5 раз) производительность обработки, что обусловлено перерывами в электрохимическом растворении металла.

При размерной электрохимической обработке, когда поступающие заготовки имеют значительно неравномерный припуск (например, штамповки), существенное значение приобретает погрешность Az.

При электрохимической обработке заготовок с большим значением Аzн применение нмпульсно-циклического режима ЭХО способствует получению минимального значения Az.

В общем виде точность размерной ЭХО зависит от погрешностей, возникающих из-за нежесткости системы стенок—приспособление—инструмент—деталь, погрешностей базирования заготовки, отклонений формы и размеров электродов-инструментов от заданных документацией и погрешностями Аа и Az,

Первая причина возникновения погрешностей не зависит от оператора — она определяется конструкцией станка. Возникновение погрешностей из-за остальных перечисленных причин во многом определяется квалификацией электрохимобработчика.

Снизить значения этих погрешностей можно тщательной подготовкой (протиркой, удалением забоин) базовых поверхностей приспособления и заготовки перед закреплением последней, проверкой размеров электродов-инструментов перед установкой на станок, поддержанием значений Uэ, х, vэ, т в процессе ЭХО в заданных пределах, контролем припуска поступающих на обработку заготовок.

При анодно-механической обработке, наиболее часто применяемой для отрезки заготовок, точность размеров их зависит от правильности установки заготовки на станке, ширины реза и условий работы электрода-инструмента (диска или ленты). Последнее требование сводится к ограничению биения рабочей части электрода-инструмента, особенно диска. Из-за биения дискового электрода-инструмента поверхность реза подвергается в процессе обработки повторному (многократному) анодно-механическому воздействию, в результате чего наблюдается отклонение от параллельности поверхностей реза.

Точность электрохимического шлифования, хонингования и суперфиниширования соответствует точности обработки, достижимой при традиционных механических процессах резания, когда деталь изготовляют без применения электролиза; погрешность обработки в данном случае равна l-2—50-80 мкм. Такая точность достигается на заключительной стадии обработки без воздействия на заготовку или деталь электрического тока, т. е. при проведении финишной обработки по традиционной технологии ЭХО. Если это условие не соблюдается, то погрешность электроабразивного шлифования заметно снижается и может составлять в некоторых случаях 0,1 мм и менее.

На точность электроэрозионно-химической обработки помимо факторов, перечисленных при рассмотрении размерной ЭХО, влияют также частота импульсов электрического напряжения и износ электрода-инструмента в результате эрозии. Эти факторы порождают дополнительные и специфические для данной технологии погрешности, из-за чего точность обработки при электроэрозионно-химическом процессе на 40—50% ниже точности, достигаемой при размерной ЭХО.

Шероховатость обработанных поверхностей. При ЭХО, как и при выполнении других технологических процессов, качество обработанных поверхностей определяется в основном их шероховатостью.

В отличие от традиционных процессов механической обработки резанием, когда резец, оказывая силовое воздействие на обрабатываемую поверхность, образует на ней деформированные (напряженные) слои металла, электрохимическая обработка не вызывает в поверхностных слоях обрабатываемого металла каких-либо механических напряжений, что в ряде случаев

положительно сказывается на качестве обработанных поверхностей.

В общем виде качество обработанных поверхностей зависит от сочетания определенных значений таких параметров, как состав электролита, его температура, скорость прокачки электролита через межэлектродный промежуток и плотность электрического тока.

При электрохимическом травлении шероховатость обрабатываемых поверхностей зависит не только от перечисленных факторов, но и от способа травления. Так, при катодном травлении заготовок, когда не происходит электрохимического растворения металла, обрабатываемые поверхности сохраняют исходную шероховатость. Однако выделяющийся на поверхности детали-катода водород проникает в обрабатываемый металл и ухудшает его прочностные свойства. При продолжительном анодном травлении несколько ухудшается исходная шероховатость поверхностей детали.

В процессе электрохимического полирования одновременно со сглаживанием выступов микронеровностей частично удаляется напряженный слой металла. Состав электролитов и режимы полирования подбирают в этом случае так, чтобы исключить растравливание металла по границам зерен.

Электрохимическое абразивное полирование является единственным процессом ЭХО, позволяющим производить обработку деталей из относительно вязких металлов, например деталей из нержавеющих сталей; при этом шероховатость обработанной поверхности равна 0,08—0,02 мкм по Ra.

При электрохимическом хонинговании качество обрабатываемой поверхности определяется в основном не электрохимическим воздействием на металл, а абразивными свойствами применяемых брусков. Шероховатость обработанных поверхностей в этом случае составляет 0,16—0,02 мкм по Ra.

Электрохимическая жидкостно-абразивная обработка одновременно с удалением заусенцев снижает и шероховатость поверхностей деталей. Обычно после этой операции шероховатость обработанных поверхностей составляет 1,25—0,32 мкм по Rz.

Шероховатость поверхностей, полученная при размерной электрохимической обработке и соответствующем составе электролита, как правило, равна 2,5—1,25 мкм по Rz. Такие результаты обеспечиваются, например, при обработке углеродистых и нержавеющих сталей с использованием в качестве электролита раствора хлористого натрия. Повышение температуры электролита, как правило, отрицательно сказывается на шероховатости поверхностей. Однако в некоторых случаях, например при размерной ЭХО титановых сплавов, с по

вышением температуры электролита качество обработанной поверхности повышается.

Скорость истечения электролита через межэлектродный промежуток при электрохимическом формообразовании оказывает меньшее влияние на шероховатость обрабатываемой поверхности. Однако при высоких скоростях истечения и соответствующей рабочей температуре электролита шероховатость многих металлов, обрабатываемых электрохимическими способами, можно значительно снизить. Это объясняется более активным растворением выступов микронеровностей при более высоких скоростях истечения электролита. Впадины микронеровностей при этом заполняются продуктами растворения, т. е. пассивируются, что замедляет и даже предотвращает дальнейшее анодное растворение металла во впадинах. Таким образом, за счет избирательного анодного растворения происходят постепенное сглаживание микрорельефа обрабатываемой поверхности и снижение шероховатости.

Повышение плотности электрического тока снижает шероховатость обрабатываемых поверхностей. Однако при плотности тока выше 15—20 А/см2 дальнейшее улучшение качества обрабатываемых поверхностей прекращается.

При размерной электрохимической обработке некоторых металлов происходит растравливание металла заготовки по границам зерен в условиях определенного сочетания электролита с другими параметрами процесса ЭХО. Глубина растравливания в этом случае может достигать 20—30 мкм. Так, в процессе обработки жаропрочных сплавов в растворе хлористого натрия при плотности тока 5—20 А/см2 и рабочей температуре электролита 20°С растравливание металла распространяется на глубину до 15 мкм. С повышением плотности тока до 80 А/смпроцесс растравливания практически прекращается, но при тех же условиях обработки и с повышением температуры электролита растравливание металла по границам зерен начинает протекать вновь и распространяется на глубину до 30 мкм.

А н о д н о-м е х а н и ч е с к а я отрезка, при которой происходит эрозионное разрушение металла, характеризуется наличием на поверхности реза дефектного слоя с измененной структурой. Глубина дефектного слоя зависит от параметров ЭХО и свойств обрабатываемого металла и может составлять 0,3— 0,8 мм.

При электрохимическом шлифовании абразивными или алмазными кругами также происходит растравливание металла по границам зерен, но на относительно небольшой глубине (1—3 мкм). Однако на заключительной стадии обработки без применения электрического тока этот слой металла удаляется, при этом шероховатость обрабатываемых поверхностей будет зависеть от параметров механического шлифования.

Качество обрабатываемых поверхностей после электро-э р о з и о н н о-х и м и ч е с к о й обработки во многом определяется эрозионным или электрохимическим разрушением металла. Если параметры обработки обеспечивают съем металла преимущественно за счет эрозионного разрушения, то при этом поверхностный слой металла будет иметь измененную структуру глубиной до 10 мкм, а шероховатость будет находиться в пределах от 20 мкм по Rz до 10 мкм по Ra. При более выраженном электрохимическом растворении металла шероховатость снижается до 2,5 мкм по Ra.

О СРЕДСТВА ТЕХНОЛОГИЧЕСКОГО ОСНАЩЕНИЯ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]