Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 Сварочные Т и В.doc
Скачиваний:
49
Добавлен:
17.03.2015
Размер:
961.54 Кб
Скачать

Кольцевая трехфазная схема выпрямления

Для ее реализации трансформатор выпрямителя должен иметь две одинаковых группы вторичных обмоток, соединенных в звезду, и включенных со сдвигом на половину периода частоты сети. При этом пульсация выпрямленного напряжения составляет 300 Гц.

Работа схемы:

В этой схеме при переключении вентиля переключается и одна из двух обмоток в цепи выпрямления. Причем каждая обмотка одной группы в течении трети периода работает поочередно с двумя обмотками другой группы. Переключение вентилей аналогично изложенному выше.

Выпрямленное напряжение (равное разности напряжения двух фаз) получается также как и в мостовой схеме с пульсацией в 1/6 периода. Поскольку в цепи выпрямления один вентиль, а не два, постольку потери на выпрямлении в 2 раза меньше, чем в предыдущей схеме.

Поэтому такая схема применяется при низких напряжениях нагрузки (сварка плавящимся электродом в защитных газах, где минимальное Uраб=15 В).

В отличие от предыдущей схемы каждый вентиль в открытом состоянии работает 1/6 периода, а не 1/3 периода. Поэтому такая схема применяется в мощных выпрямителя (1000 А и более).

Основной недостаток этой схемы выпрямления – для нее требуется более сложный и более дорогой трансформатор, который проектируется с учетом подмагничивания постоянной составляющей тока.

Шестифазная схема выпрямления с уравнительным реактором

Для ее реализации трансформатор выпрямителя также должен иметь две одинаковых группы вторичных обмоток, соединенных в звезду, и включенных со сдвигом на половину периода частоты сети. При этом пульсация выпрямленного напряжения составляет 300 Гц. Кроме того, для обеспечения параллельной работы на нагрузку одновременно двух фаз требуется еще уравнительный реактор – симметричный дроссель.

А В С

Шестифазная схема выпрямления с уравнительным реактором

Работа схемы:

Для каждой звезды включаются вентили с самым высоким положительным потенциалом фазы аналогично трехфазной нулевой схеме. Без уравнительного реактора получается шестифазное выпрямление с работой каждой фазы и вентиля 1/6 периода.

При наличии уравнительного реактора ток, вызываемый разностью фазного напряжения обмоток разных групп, создает падение напряжения на обмотках реактора. Это изменяющееся по величине напряжение на одной половине реактора вычитается из большего фазного напряжения, а на другой половине реактора суммируется с меньшим фазным напряжением. Такое выравнивание напряжения на нагрузке позволяет питать ее от двух обмоток трансформатора одновременно через два совместно работающих вентиля. Это позволяет создавать мощные выпрямители без параллельного включения полупроводниковых вентилей, что исключает отбор их по характеристикам при изготовлении и ремонте.

Поэтому такая схема применяется в выпрямителях большой мощности (1000 А и больше) прежде всего при питании низковольтной нагрузки .

Основной недостаток этой схемы выпрямления – для нее требуется более сложный и более дорогой трансформатор, который проектируется с учетом подмагничивания постоянной составляющей тока, а также дополнительный дроссель.

Сравнительные характеристики схем выпрямления показывают следующее:

1.Минимальный уровень пульсаций для идеальных схем 5,7% от амплитуды обеспечивают 3 схемы: трехфазная мостовая, кольцевая и с уравнительным реактором;

2.С точки зрения используемой мощности трансформатора наилучшей является мостовая схема. Она лучше, чем остальные по использованию мощности от нескольких процентов до несколько десятков процентов;

3.С точки зрения минимальных потерь при выпрямлении низковольтной нагрузки лучше схемы с уравнительным реактором являются и кольцевая.

4.С точки зрения обеспечения параллельной работы вентилей на нагрузку преимущество имеет схема с уравнительным реактором.

Сглаживающие фильтры

Бывают емкостные и индуктивные.

Емкостные фильтры наиболее целесообразно применять при большом сопротивлении нагрузки и при высоких рабочих частотах, или хотя бы одно из этих условий.

Индуктивный фильтр:

Для сварочных ИП с выпрямлением на промышленной частоте индуктивные фильтры приемлемы по габаритам, весу, стоимости. Конструктивно это дроссели с сердечником из трансформаторного железа и зазором в сердечнике для уменьшения подмагничивания постоянной составляющей выпрямленного тока.

Сварочные выпрямители регулируемые трансформатором

Падающая характеристика у сварочных выпрямителей получается различными способами. Наиболее простой состоит в том, что сварочный выпрямитель комплектуется силовым трансформатором с падающей характеристикой. По такому принципу сконструирован сварочный выпрямитель ВД-306.

В него входят силовой трансформатор с подвижными катушками или шунтом, выпрямительный блок и пускозащитная аппаратура. Грубая регулировка тока осуществляется одновременным переключением первичной и вторичной обмоток со схемы «звезда» (λ / λ) на «треугольник» (∆ / ∆). В первом случае устанавливается ступень малых токов, а во втором - больших. В пределах каждой ступени плавное регулирование тока производится изменением расстояния между первичной и вторичной обмотками. Подробнее о работе таких трансформаторов см. в разд. 3. Выпрямительный блок собран на кремниевых диодах, которые принудительно охлаждаются вентилятором. Включение выпрямителя в работу и выключение производятся магнитным пускателем. Защитная аппаратура не позволяет включать выпрямитель, если на диоды не поступает воздушный поток, а так же если вышел из строя один из диодов или произошел пробой сетевого напряжения на корпус. Описанная пускозащитная аппаратура является традиционной для сварочных выпрямителей. Выпрямители рассмотренного типа просты в изготовлении и эксплуатации. Их недостатки - в отсутствии стабилизации режима при изменении напряжения сети и невозможности дистанционного управления.

Принципиальная схема сварочного выпрямителя ВД-306: С 1 - силовой трансформатор с падающей характеристикой. ВБ - выпрямительный блок

Сварочные выпрямители регулируемые тиристорами

Тиристорные выпрямители помимо трансформатора и блока вентилей содержат в силовой цепи фильтр-дроссель, а в системе управления датчики и электронные блоки.

Сварочные выпрямители регулируемые дросселем насыщения

Для получения падающих характеристик в сварочных выпрямителях используются также дроссели насыщения. Дроссель, представляющий собой индуктивное сопротивление, располагают между силовым трансформатором и выпрямительным блоком. Силовой трансформатор в выпрямителе имеет жесткую внешнюю характеристику. Падающая же характеристика выпрямителя обеспечивается за счет индуктивного сопротивления дросселя.

Его работа происходит следующим образом.

Изначально ток в обмотке управления задается относительно большим, чтобы его магнитный поток произвел полное насыщение железного сердечника дросселя. В таком состоянии дроссель теряет свои свойства индуктивного сопротивления и падающую характеристику источнику питания не создает.

Конструкция выпрямителей с регулируемым выходным напряжением предусматривает наличие дросселя насыщения. Однако в данном случае дроссель работает не в режиме компенсации намагничивающих сил, а в режиме подмагничивания. При этом силовая и обмотка управления включены согласно, т.е. магнитные потоки их складываются, увеличивая суммарный магнитный поток дросселя. В исходном состоянии (Jсв) дроссель незначительно подмагничивается током обмотки управления Jсв и сохраняет свойства индуктивного сопротивления. При протекании сварочного тока дроссель оказывает ему сопротивление и создает падающий участок внешней характеристики. Но по мере роста сварочного тока его магнитный поток все более и более усиливает исходный магнитный поток, создаваемый обмоткой управления. И вот в некоторый момент наступает полное насыщение дросселя, и он теряет свойства индуктивного сопротивления. Внешняя характеристика становится жесткой. По такой схеме были собраны выпрямители ВДГ-301, ВДГ-302, ВДГ-303. Первичные обмотки трансформатора в этих выпрямителях секционированы, что позволяет получать три ступени регулирования. Плавное регулирование выходного напряжения внутри каждой ступени производится за счет дросселя. Причем настроить дроссель на нужное выходное напряжение можно только в процессе работы, когда начинает протекать сварочный ток При холостом ходе вольтметр будет показывать одно и то же значение выходного напряжения, независимо от величины тока в обмотке управления Jу.