Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpora_k_nadezhnosti.doc
Скачиваний:
68
Добавлен:
18.03.2015
Размер:
12.53 Mб
Скачать

Оценку адекватности уравнения можно производить по среднеквадратической погрешности. При этом мерой неадекватности является

, (14.3)

где q число коэффициентов уравнения (14.1); yk – значение целевого параметра у, рассчитанного по исходной теоретической модели в точке – то же значение, рассчитанное по уравнению (14.1).

Эта величина, а также в области пространства независимых переменных должны быть сопоставлены с диапазоном изменения целевого параметра или допустимой ошибки его определения. Можно считать, что уравнение является адекватным, если

(14.4)

и

(14.5)

где – базисное или максимальное из всех рассчитанных по теоретической модели значенийу; d – заданная погрешность аппроксимации теоретической модели; – максимальная ошибка предсказанияу в области X; X – заданная (рассматриваемая) область пространства независимых переменных.

Среди контрольных точек, в которых производится сопоставление теоретических у и предсказанных значений целевой функции, и ищется максимальное между ними расхождение . Приэтом, кроме точек, соответствующих плану использоваться ещё ряд характерных точек.

Наконец, для грубой оценки уравнения ее адекватность можно проверить и по разности , где – значение исследуемой величины при проведении эксперимента и базисных факторов. Если эта разность не превышает заданной погрешности, то уравнение можно считать адекватным в заданной области варьируемых факторов. В общем случае погрешность регрессионной модели должна задаваться исследователем в зависимости от решаемой задачи. Например, для анализа уровней напряжения в электрической сети, где ее значение изменяется не более, чем на 10%, погрешность модели не должна быть более 1 – 2%. Для анализа потерь активной мощности погрешность может достигать 5%, а для реактивной мощности даже 10%.

С помощью МПЭ могут быть построены регрессионные модели сложных ЭМС, представляющие возможность для весьма эффективного анализа установившихся режимов и могущие успешно использоваться при оперативном управлении. При этом объект исследования – ЭМС может представляться детерминировано и в вероятностной форме.

При построении детерминированной регрессионной модели ЭМС ставится задача аппроксимации сложной модели ЭМС детерминированным полиномом, в некотором смысле наилучшим образом отвечающем исходной модели. В соответствии с особенностями режимов ЭМС можно предложить следующую методику моделирования для построения детерминированных регрессионных моделей ЭМС.

Все параметры исследуемой системы необходимо разделить на две группы: выходные (целевые или оптимизируемые) и входные варьируемые (независимые переменные). Для входных варьируемых параметров выбирается область варьирования. При этом стремятся, чтобы она охватила те режимы, которые представляют интерес для исследователя (например, область оптимальных режимов). Далее выбирают вид аппроксимирующего полинома (модели), обычно в линейном или квадратичном виде, и соответственно оптимальный план постановки эксперимента. Эксперимент проводится согласно правилам планирования на ЭВМ. Обработка результатов такого эксперимента позволяет количественно оценить коэффициенты искомого аппроксимирующего полинома (модели).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]