Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Geodynamics-1.doc
Скачиваний:
11
Добавлен:
19.03.2015
Размер:
2.69 Mб
Скачать

1.2.2 Continental drift

The "displacement hypothesis" of continental movements matured early in the twentieth century. In 1908 F. B. Taylor related the world's major fold-belts to convergence of the continents as they moved away from the poles, and in 1911 H. B. Baker reassembled the Atlantic-bordering continents together with Australia and Antarctica into a single continent; regrettably he omitted Asia and the Pacific. However, the most vigorous proponent of the displacement hypothesis was Alfred Wegener, a German meteorologist and geologist. In 1912 Wegener suggested that all of the continents were together in the Late Paleozoic, so that the land area of the Earth formed a single landmass (Fig. 1.5). He coined the name Pangaea (Greek for "all Earth") for this super-continent, which he envisioned was surrounded by a single ocean (Panthalassa). Wegener referred to the large-scale horizontal displacement of crustal blocks having continental dimensions as Kontinentalverschiebung. The anglicized form, continental drift, implies additionally that displacements of the blocks take place slowly over long time intervals.

Fig. 1.5 (a) Wegener's reconstruction of Pangaea in the Late Carboniferous, showing estimated positions of the North and South poles and paleo-equator. Shaded areas, arid regions; K, coal deposits; S, salt deposits; W, desert regions; E, ice sheets (modified after Koppen and Wegener, 1924). Relative positions of the continents are shown in (b) the Eocene (shaded areas, shallow seas) and (c) the Early Quaternary (after Wegener, 1922) The latitudes and longitudes are arbitrary.

1.2.2.1 Pangaea

As a meteorologist Wegener was especially interested in paleoclimatology. For the first half of the twentieth century the best evidence for the continental drift hypothesis and the earlier existence of Pangaea consisted of geological indica­tors of earlier paleoclimates. In particular, Wegener observed a much better alignment of regions of Permo-Carboniferous glaciation in the southern hemisphere when the continents were in the reconstructed positions for Gondwanaland instead of their present positions. His reconstruction of Pangaea brought Carboniferous coal deposits into alignment and suggested that the positions of the continents relative to the Paleozoic equator were quite different from their modern ones. Together with W. Koppen. a fellow German meteorologist, he assembled paleoclimatic data that showed the distributions of coal deposits (evidence of moist temperate zones), salt, gypsum and desert sandstones (evidence of dry climate) for several geological eras (Carboniferous, Permian, Eocene, Quaternary). When plotted on Wegener's reconstruction maps, the paleoclimatic data for each era formed climatic belts just like today; namely, an equatorial tropical rain belt, two adjacent dry belts, two temperate rain belts, and two polar ice caps (Fig. 1.5a).

Wegener's continental drift hypothesis was bolstered in 1937 by the studies of a South African geologist, Alexander du Toit, who noted sedimentological, paleontological, paleoclimatic, and tectonic similarities between western Africa and eastern South America. These favored the Gondwanaland reconstruction rather than the present configuration of continents during the Late Paleozoic and Early Mesozoic.

Some of Wegener's theories were largely conjectural. On the one hand, he reasoned correctly that the ocean basins are not permanent. Yet he envisioned the sub-crustal material as capable of viscous yield over long periods of time, enabling the continents to drift through the ocean crust like ships through water. This model met with profound scepticism among geologists. He believed, in the face of strong opposition from physicists, that the Earth's geographic axis had moved with time, instead of the crust moving relative to the fixed poles. His timing of the opening of the Atlantic (Fig. 1.5b, c) was faulty, requiring a large part of the separa­tion of South America from Africa to take place since the Early Pleistocene (i.e., in the last two million years or so). Moreover, he was unable to offer a satisfactory driving mechanism for continental drift. His detractors used the disprovable speculations to discredit his better-documented arguments in favor of continental drift.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]