Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
оргхим.docx
Скачиваний:
14
Добавлен:
23.03.2015
Размер:
138.24 Кб
Скачать

1. Гидрирование алкенов

2. Восстановление алкилгалогенидов а) Гидролиз реактива Гриньяра

б) Восстановление металлом в кислоте

3. Реакция Вюрца

ПОЛУЧЕНИЕ.

1.Действие металлического натрия на моногалогенпроизводные(Реакция Вюрца)

C2H5I+CH3I+2Na=C3H8+2NaI

2. Восстановление непредельных углеводородов

H3C- CH=CH2+H2 H3C-CH2-CH3

3.Сплавление солей карбоновых кислот со щелочью

CH3COONa + NaOH Na2CO3+CH4

ХИМИЧЕСКИЕ СВОЙСТВА АЛКАНОВ.

Химические свойства. В обычных условиях алканы химически инертны. Они устойчивы к действию многих реагентов: не взаимодействуют с концентрированными серной и азотной кислотами, с концентрированными и расплавленными щелочами, не окисляются сильными окислителями - перманганатом калия KMnО4 и т.п. Химическая устойчивость алканов объясняется высокой проч­ностью s-связей С-С и С-Н, а также их неполярностью. Непо­лярные связи С-С и С-Н в алканах не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. Поэтому для алканов характер­ны радикальные реакции, в результате которых получаются сое­динения, где атомы водорода замещены на другие атомы или группы атомов. Следовательно, алканы вступают в реакции, про­текающие по механизму радикального замещения, обозначаемого символом SR (от англ, substitution radicalic). По этому механизму легче всего замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

1.Галогенирование

СH4+Cl2=CH3Cl+HCl

2.Нитрование

3.Реакции горения

С5H12+8O2=5CO2+6H2O

4.Сульфохлорирование

CH3(CH2)10CH3+SO2+Cl2CH3(CH2)10CH2- SO2Cl+HCl CH3(CH2)10CH2- SO2Cl+2NaOHCH3(CH2)10- CH2SO3Na+NaCl Это свойство используется при получении синтетических моющих средств. 

Крекинг — это гемолитический разрыв связей С-С, который протекает при нагревании и под действием катализаторов. При крекинге высших алканов образуются алкены и низшие ал­каны, при крекинге метана и этана образуются ацетилен: C8H18 > C4H10 + С4Н8, 2СН4 > С2Н2 + ЗН2, С2Н6 > С2Н2 + 2Н2.

3Механизмы реакции галогенирования алканов

Реакции радикального замещения — реакции замещения, в которых атаку осуществляют свободные радикалы — частицы, содержащие один или несколько неспаренных электронов.Реакции радикального замещения обозначают SN.Стадия 1 – зарождение цепи - появление в зоне реакции свободных радикалов. Под действием световой энергии гомолитически разрушается связь в молекуле Cl:Cl на два атома хлора с неспаренными электронами (свободные радикалы) ·Cl:

Стадия 2 – рост (развитие) цепи. Свободные радикалы, взаимодействуя с молекулами, порождают новые радикалы и развивают цепь превращений:

(Реакция Cl· + CH4  CH3Cl + H· не идет, т.к. энергия атомарного водорода H· значительно выше, чем метильного радикала ·СН3).

Стадия 3 – обрыв цепи. Радикалы, соединяясь друг с другом, образуют молекулы и обрывают цепь превращений:

При хлорировании или бромировании алкана с вторичными или третичными атомами углерода легче всего идет замещение водорода у третичного атома, труднее у вторичного и еще труднее у первичного. Это объясняется большей устойчивостью третичных и вторичных углеводородных радикалов по сравнению с первичными вследствие делокализации неспаренного электрона. Поэтому, например, при бромировании пропана основным продуктом реакции является 2-бромпропан:

4 Алкены метод синтеза и своиства

Алкены Простейшими непредельными (ненасыщенными) соединениями являются углеводороды, содержащие одну или несколько двойных связей. Алкены, содержащие две двойные связи, назы­ваются диенами, содержащие три двойные связи — триенами и т.д. Соединения с несколькими двойными связями имеют общее название полиены. Алкенами называются непредельные углеводороды, молекулы которых содержат одну двойную связь. Первый представитель этого класса — этилен СН2 = СН2, в связи с чем алкены также на­зывают этиленовыми углеводородами. Ближайшие гомологи эти­лена: СН3-СН=СН2 СН3-СН2-СН=СН2 СН3-СН=СН-СН3 пропилен бутен-1 бутен-2 Простейший алкен с разветвленным углеродным скелетом: 2-метил промен Общая формула гомологического ряда алкенов СnН2n. Она совпадает с общей формулой циклоалкана, поэтому алкены и циклоалканы являются межклассовыми изомерами. При отщеплении атома водорода от молекул алкенов образу­ются непредельные радикалы обшей формулы CnH2n-1, простей­шие из которых — винил (этенил) и аллил (пропенил): СН2=СН-СН2=СН-СН2-винилаллил Атомы углерода при двойной связи находятся в состоянии sp2-гибридизации. Три s-связи, образованные гибрид­ными орбиталями, располагаются в одной плоскости под углом 120° друг к другу; p-связь образована при перекрывании негибридных 2р-орбиталей соседних атомов углерода. При этом атомные р-орбитали перекрываются не в межъядерном пространстве, а вне его. Поэтому такое "боковое" перекрывание менее эффективно, чем осевое, и, следовательно, p-связь является менее прочной, чем s-связь. Дополнительное p-связывание двух атомов углерода приводит к тому, что уменьшается расстояние между ядрами, поскольку двойная связь является сочетанием s- и p-связей. Длина двойной связи С=С составляет 0.133 нм, что существенно меньше длины одинарной связи (0,154 нм). Энергия двойной связи (606 кДж/моль) меньше удвоенного зна­чения энергии одинарной связи (347-2 = 694 кДж/моль); это обус­ловлено меньшей энергией p-связи. Структурная изомерия алкенов обусловлена изомерией углеродного скелета (например, бутен-1 и 2-метилпропен) и изомерией положения двойной связи. Пространственная, или цис-транс-изомерия обусловлена различным положением заместителей относительно плоскости двойной связи. Если каждый из атомов углерода при связи С=С связан с дву­мя разными заместителями, то эти заместители могут распола­гаться по одну сторону от плоскости двойной связи (цис-изомер) или по разные стороны (транс-изомер), например: цис-бутен-2 транс-бутен-2 Эти два изомера нельзя перевести друг в друга без вращения вокруг двойной связи С=С, а это вращение требует разрыва p-связи и затраты большого количества энергии. Поэтому цис- и транс-изомеры представляют собой разные индивидуальные вещества, которые отличаются друг от друга физическими и хими­ческими свойствами. Алкены, у которых хотя бы один из атомов углерода при связи С=С имеет два одинаковых заместителя, не имеют цис-транс-изомеров. В алкенах с неразветвленной углеродной цепью нумерацию начинают с того конца, ближе к которому находится двойная связь. В названии соответствующего алкана окончание -ан заменяется на -ен. В разветвленных алкенах выби­рают главную цепь так, чтобы она содержала двойную связь, даже если она при этом и не будет самой длинной. Перед названием главной цепи указывают номер атома углерода, при котором на­ходится заместитель, и название этого заместителя. Номер после названия главной цепи указывает положение двойной связи, на­пример: 4метилпентен-2 Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 — 30 °С. При обычных условиях алкены С2 - С4 — газы. С5 – С15 — жидкости, начиная с C16 — твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях. В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения. 1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:tС8Н18>С4Н10+С4Н8 Крекинг протекает по свободнорадикальному механизму при высоких температурах (400-700 °С). 2. Другой промышленный способ получения алкенов - дегидрирование алканов: t,Cr2O3 СН3-СН2-СН3>СН3-СН=СН2+Н2 3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p-связь. К таким реакциям относятся следующие. 1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С: H2SO4+Н3-СН2-ОН>СН2=СН2+Н2О 2) Отщепление галогеноводородов проводят при действии спиртовых растворов щелочей на моноалкилгалогениды: С2Н6ОН+СН3-СН2-СНВr-СН3+КОН>СН3-СН=СН-СН3+КВr+Н2О При отщеплении Н2O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева. 3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами: CH2Br-CHBr-CH3+Mg>СН2=СН-СН3+MgВr2. Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p-связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения, обозначаемому символом AE(от англ, addition electrophilic). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий. На первой стадии электрофильная частица (чаще всего это бывает протон H+) взаимодействует с p-электронами двойной связи и образует p-комплекс, который затем превращается в карбокатион путем образования ковалентной s-связи между электрофильной частицей и одним из атомов углерода:алкен p-комплекс карбокатион На второй стадии карбокатион реагирует с анионом X-, образуя вторую s-связь за счет электронной пары аниона: Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p-электронной плотности под влиянием заместителей: . Электронодонорные заместители, проявляющие +I -эффект, смещают p-электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова: при присоединении полярных молекул типа НХ(X= Hal, ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи. Рассмотрим конкретные примеры реакций присоединения. 1) Гидрогалогенирование. При взаимодействии алкенов с галогеноводородами (HCl, НВr) образуются алкилгалогениды: СН3-СН=СН2 + НВr ® СН3-СНВr-СН3. Продукты реакции определяются правилом Марковникова. Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:R-O-O-R СН3-СН=СН2 + НВr >СН3-СН2-СН2Вr Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции. 2) Гидратация. При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова: СН3-СН=СН2 + НОН ® СН3-СН(ОН)-СН3 3) Галогенирование. Алкены обесцвечивают бромную воду: СН2=СН2 + Вr2 ® ВrСН2-СН2Вr. Эта реакция является качественной на двойную связь. 4) Гидрирование. Присоединение водорода происходит под действием металлических катализаторов: t, Ni  СН3-СН=СН2 + Н2 >СН3-СН2-СН3 5) Полимеризация Алкенов и их производных в присутствии кислот протекает по механизму АE: Н* nCH2=CHR >(-CH2-CHR-)n где R = Н, СН3, Cl, С6Н5 и т.д. Молекула CH2=CHR называется мономером, полученное соединение — полимером , число n-степень полимеризации. Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие. Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера) образуются двухатомные спирты: ЗСН2=СН2 + 2КМnО4 + 4Н2О ® ЗНОСН2-СН2ОН + 2MnO2v + 2KOH. В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО2, например: [О] СН3-СН=СН-СН3>2СН3-СООН По продуктам окисления можно установить положение двойной связи в исходном алкене. Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду: СnН2n + Зn/2О2 ® nСО2^ + nН2О. При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды: СnН2n + nО2 ® nCO^ + nH2O. Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например: При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой — при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена. Низшие алкены — важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.