Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statist_kursov_kharev.docx
Скачиваний:
50
Добавлен:
27.03.2015
Размер:
689.45 Кб
Скачать

Глава 1. Характеристика регрессионного анализа

    1. Сущность, цели, математическое определение регрессионного анализа

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных X_1, X_2, ..., X_p на зависимую переменную Y. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Цели регрессионного анализа:

  • Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)

  • Предсказание значения зависимой переменной с помощью независимой(-ых)

  • Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Математическое определение регрессии

Строго регрессионную зависимость можно определить следующим образом. Пусть Y, X_1, X_2, \ldots, X_p — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений X_1=x_1, X_2=x_2, \ldots, X_p=x_p определено условное математическое ожидание y(x_1,x_2, \ldots, x_p)=\mathbb{E}(Y \mid X_1=x_1, X_2=x_2, \ldots, X_p=x_p) (уравнение регрессии в общем виде), то функция y(x_1,x_2, \ldots, x_p) называется регрессией величины Y по величинам X_1, X_2,\ldots, X_p, а её график — линией регрессии Y по X_1, X_2, \ldots, X_p, или уравнением регрессии.

Зависимость Y от X_1, X_2, \ldots, X_p проявляется в изменении средних значений Y при изменении X_1, X_2, \ldots, X_p. Хотя при каждом фиксированном наборе значений X_1=x_1, X_2=x_2, \ldots, X_p=x_p величина Y остаётся случайной величиной с определённым распределением.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении X_1, X_2, ..., X_p, используется средняя величина дисперсии Y при разных наборах значений X_1, X_2, ..., X_p (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

В матричной форме уравнение регрессии (УР) записывается в виде: Y=BX+U, где U — матрица ошибок. При обратимой матрице X◤X получается вектор-столбец коэффициентов B с учётом U◤U=min(B). В частном случае для Х=(±1) матрица X◤X является рототабельной, и УР может быть использовано при анализе временны́х рядов и обработке технических данных.

    1. Статистическое изучение взаимосвязи социально-экономических явлений и процессов

Исследование объективно существующих связей между социально-экономическими явлениями и процессами является важнейшей задачей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это такая связь явлений и процессов, когда изменение одного из них - причины ведет к изменению другого – следствия.

Финансово-экономические процессы представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих процессов необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.

В основе первого этапа статистического изучения связи лежит качественный анализ, связанный с анализом природы социального или экономического явления методами экономической теории, социологии, конкретной экономики. Второй этап - построение модели связи, базируется на методах статистики: группировках, средних величинах, и так далее. Третий, последний этап - интерпретация результатов, вновь связан с качественными особенностями изучаемого явления. Статистика разработала множество методов изучения связей. Выбор метода изучения связи зависит от познавательной цели и задач исследования.

Признаки по их сущности и значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называются результативными.

В статистике различают функциональную и стохастическую зависимости. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической связи является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.

Связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.

По направлению выделяют связь прямую и обратную. Прямая - это связь, при которой с увеличением или с уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного признака. Так, рост объемов производства способствует увеличению прибыли предприятия. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака, то есть обратная - это связь, при которой с увеличением или с уменьшением значений одного признака происходит уменьшение или увеличение значений другого признака. Так снижение себестоимости единицы производимой продукции влечет за собой рост рентабельности.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные. Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида:

Если же связь может быть выражена уравнением какой-либо кривой линии, то такую связь называют нелинейной или криволинейной, например:

- параболы: 

- гиперболы:    

Для выявления наличия связи, ее характера и направления в статистике используются методы: приведения параллельных данных; графический; аналитических группировок; корреляции, регрессии. Метод приведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Графически взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначаются точкой. При отсутствии тесных связей имеет место беспорядочное расположение точек на графике. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.

                              

Рис.1.1. График корреляционного поля В статистике принято различать следующие варианты зависимостей: Парная корреляция - связь между двумя признаками (результативным и факторным, или двумя факторными). Частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков. Множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование. Корреляционный анализ имеет своей задачей количественное определение тесноты и направления связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи). Теснота связи количественно выражается величиной коэффициентов корреляции, которые давая количественную характеристику тесноты связи между признаками, позволяют определять "полезность" факторных признаков при построении уравнения множественной регрессии. Знаки при коэффициентах корреляции характеризуют направление связи между признаками. Регрессия тесно связана с корреляцией и позволяет исследовать аналитическое выражение взаимосвязи между признаками. Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком), обусловлено влиянием одной или нескольких независимых величин (факторных признаков). Одной из проблем построения уравнений регрессии является их размерность, то есть определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным. Сокращение размерности за счет исключения второстепенных, несущественных факторов позволяет получить модель, быстрее и качественнее реализуемую. В то же время, построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс. При построении моделей регрессии должны соблюдаться следующие требования: 1.        Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями. 2.        Возможность описания моделируемого явления одним или несколькими уравнениями причинно-следственных связей. 3.        Все факторные признаки должны иметь количественное (числовое) выражение. 4.        Наличие достаточно большого объема исследуемой выборочной совокупности. 5.        Причинно-следственные связи между явлениями и процессами должны описываться линейной или приводимой к линейной форме зависимостью. 6.        Отсутствие количественных ограничений на параметры модели связи. 7.        Постоянство территориальной и временной структуры изучаемой совокупности. Соблюдение данных требований позволяет построить модель, наилучшим образом описывающую реальные социально-экономические явления и процессы.

    1. Термины и концепция регрессивного анализа

Невозможно обсуждать регрессионный анализ без предварительного знакомства с основными терминами и концепциями, характерными для регрессионной статистики:

Уравнение регрессии. Это математическая формула, применяемая к независимым переменным, чтобы лучше спрогнозировать зависимую переменную, которую необходимо смоделировать. К сожалению, для тех ученых, кто думает, что х и у это только координаты, независимая переменная в регрессионном анализе всегда обозначается как y, а зависимая — всегда X. Каждая независимая переменная связана с коэффициентами регрессии, описывающими силу и знак взаимосвязи между этими двумя переменными. Уравнение регрессии может выглядеть следующим образом (у - зависимая переменная, Х - независимые переменные, βs- коэффициенты регрессии), каждый из компонентов уравнения регрессии описан ниже:

Рис. 1.2 Элементы Уравнения регрессии по методу наименьших квадратов

  • Зависимая переменная (y) — это переменная, описывающая процесс, который вы пытаетесь предсказать или понять (бытовые кражи, осадки). В уравнении регрессии эта переменная всегда находится слева от знака равенства. В то время, как используется регрессия для предсказания зависимой величины, всегда начинаете с набора хорошо известных у-значений и используете их для калибровки регрессионной модели. Известные у-значения часто называют наблюдаемыми величинами.

  • Независимые переменные (X) это переменные, используемые для моделирования или прогнозирования значений зависимых переменных. В уравнении регрессии они располагаются справа от знака равенства и часто называются объяснительными переменными. Зависимая переменная - это функция независимых переменных.

  • Коэффициенты регрессии (β) — это коэффициенты, которые рассчитываются в результате выполнения регрессионного анализа. Вычисляются величины для каждой независимой переменной, которые представляют силу и тип взаимосвязи независимой переменной по отношению к зависимой. Предположим, что моделируется частота пожаров как функцию от солнечной радиации, растительного покрова, осадков и экспозиции склона. Можно ожидать положительную взаимосвязь между частотой пожаров и солнечной радиацией (другими словами, чем больше солнца, тем чаще встречаются пожары). Если отношение положительно, знак связанного коэффициента также положителен. Можно ожидать негативную связь между частотой пожаров и осадками (другими словами, для мест с большим количеством осадков характерно меньше лесных пожаров). Коэффициенты отрицательных отношений имеют знак минуса. Когда взаимосвязь сильная, значения коэффициентов достаточно большие (относительно единиц независимой переменной, с которой они связаны). Слабая взаимосвязь описывается коэффициентами с величинами около 0; β0 — это пересечение линии регрессии. Он представляет ожидаемое значение зависимой величины, если все независимые переменные равны 0.

P-значения. Большинство регрессионных методов выполняют статистический тест для расчета вероятности, называемой р-значением, для коэффициентов, связанной с каждой независимой переменной. Нулевая гипотеза данного статистического теста предполагает, что коэффициент незначительно отличается от нуля (другими словами, для всех целей и задач, коэффициент равен нулю, и связанная независимая переменная не может объяснить вашу модель). Маленькие величины р-значений отражают маленькие вероятности и предполагают, что коэффициент действительно важен для вашей модели со значением, существенно отличающимся от 0 (другими словами, маленькие величины р-значений свидетельствуют о том, что коэффициент не равен 0). Коэффициент с р-значением, равным 0,01, например, статистически значимый для 99 % доверительного интервала; связанные переменные являются эффективным предсказателем. Переменные с коэффициентами около 0 не помогают предсказать или смоделировать зависимые величины; они практически всегда удаляются из регрессионного уравнения, если только нет веских причин сохранить их.

R2/R-квадрат. Статистические показатели составной R-квадрат и выровненный R-квадрат вычисляются из регрессионного уравнения, чтобы качественно оценить модель. Значение R-квадрат лежит в пределах от 0 до 100 процентов. Если модель описывает наблюдаемые зависимые переменные идеально, R-квадрат равен 1.0 (несомненно, сделана ошибка; возможно, использовалась модификация величины у для предсказания у). Вероятнее всего, значения R-квадрат в районе 0,49, например, можно интерпретировать подобный результат как "Это модель объясняет 49 % вариации зависимой величины". Чтобы понять, как работает R-квадрат, постройте график, отражающий наблюдаемые и оцениваемые значения у, отсортированные по оцениваемым величинам. Обратим внимание на количество совпадений. Этот график визуально отображает, насколько хорошо вычисленные значения модели объясняют изменения наблюдаемых значений зависимых переменных. Выверенный R-квадрат всегда немного меньше, чем составной R-квадрат, т.к. он отражает всю сложность модели (количество переменных) и связан с набором исходных данных. Следовательно, выверенный R-квадрат является более точной мерой для оценки результатов работы модели.

Рис. 1.3 R-квадрат – это показатель моделирования, показывающий насколько хорошо оцененные у-значения совпадают с наблюдаемыми у-значениями.

Невязки. Существует необъяснимое количество зависимых величин, представленных в уравнении регрессии как случайные ошибки ε. Известные значения зависимой переменной используются для построения и настройки модели регрессии. Используя известные величины зависимой переменной (Y) и известные значений для всех независимых переменных (Хs), регрессионный инструмент создаст уравнение, которое предскажет те известные у-значения как можно лучше. Однако предсказанные значения редко точно совпадают с наблюдаемыми величинами. Разница между наблюдаемыми и предсказываемыми значениями у называется невязка или отклонение. Величина отклонений регрессионного уравнения - одно из измерений качества работы модели. Большие отклонения говорят о ненадлежащем качестве модели.

Рис. 1.4 Невязки регрессионного анализа

Красные области – местоположения, где реальные значения больше, нежели оцененные в модели. Синие области – местоположения, где реальные значения меньше, нежели оцененные моделью.

Создание регрессионной модели представляет собой итерационный процесс, направленный на поиск эффективных независимых переменных, чтобы объяснить зависимые переменные, чтобы определить, какие величины являются эффективными предсказателями. Затем пошаговое удаление и/или добавление переменных до тех пор, пока не найдётся наилучшим образом подходящую регрессионную модель. Т.к. процесс создания модели часто исследовательский, он никогда не должен становиться простым "подгоном" данных. Он должен учитывать теоретические аспекты, мнение экспертов в этой области и здравый смысл.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]