Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эл-во и магнетизм 2006.doc
Скачиваний:
19
Добавлен:
27.03.2015
Размер:
11.26 Mб
Скачать

2. Закон изменения тока в цепи при подключении

и отключении источника.

Применение закона для определения индуктивности

Найдем изменение тока в цепи, состоящей из последовательно соединенных соленоида, индуктивность которой равна , и резистора, активное сопротивление которого.

Если внешнее магнитное поле отсутствует или постоянно, а контур неподвижен, то индукционные явления обусловлены только самоиндукцией.

Из закона Ома для замкнутой цепи, в которой действует источник ЭДС , а общее активное сопротивление, сила тока равна

Для нахождения зависимости силы тока от времени разделим переменные

.

Полагая постоянными и интегрируя, получаем

где – постоянная интегрирования, значение которой определяется начальными условиями решаемой задачи.

Пусть в момент времени сила тока. Тогда

Выразив силу тока, получим

(15.5)

Из этой общей формулы можно получить зависимость силы тока от времени при замыкании цепи. В этом случае начальный ток равен нулю и выражение (15.5) приобретает вид

(15.6)

Из этой формулы видно, что сила тока при замыкании цепи постепенно увеличивается, стремясь к , соответствующей величине постоянного тока (рис. 15.1). Нарастание тока происходит тем медленнее, чем меньше отношениев показателе степени экспоненты или больше обратное отношение, физический смысл которого обсуждается ниже.

Если же в момент времени при силе токаисточник ЭДС отключить (), сохранив замкнутость цепи, то из формулы (15.5), получим следующую зависимость силы тока от времени:

(15.7)

В этом случае сила тока в цепи постепенно уменьшается от начального значения , стремясь к нулю. При этом за время(время релаксации) сила тока изменяется в раза.

Рис. 15.1

Следует заметить, что в опыте удобнее снимать вместо зависимости силы тока в цепи от времени зависимость напряжения на некотором известном активном сопротивлении, последовательно включенном в цепь, от времени. Напряжение в этом случае будет пропорционально силе тока.

Из сказанного ясно, что, измерив силу токов (или напряжения) в некоторые моменты времени ,и зная, кроме того, величину общего активного сопротивления контура, можно с помощью зависимостей (15.6) или (15.7) определить индуктивность контура.

Особенно просто, зная активное сопротивление цепи , определить её индуктивность, измерив время релаксации,

(15.8)

3. Вынужденные электромагнитные колебания в контуре,

их применение для измерения индуктивности

Рассмотрим контур, состоящий из последовательно соединенных конденсатора емкостью , активного сопротивленияи соленоида индуктивностью.

Для получения незатухающих электромагнитных колебаний необходимо включить в контур источник тока с периодически изменяющейся ЭДС (рис. 15.2).

Рис. 15.2

В этом случае колебания в контуре являются вынужденными.

Пусть внешняя ЭДС изменяется по гармоническому закону

.

Тогда, используя закон Ома, можно получить следующее дифференциальное уравнение вынужденных электромагнитных колебаний

и, решив это уравнение, найти для установившихся вынужденных колебаний связь амплитудных значений силы тока и внешней ЭДС

(15.9)

где величина называется полным сопротивлением электрической цепи переменного тока.

В нее входят активное сопротивление контура, емкостное сопротивление и индуктивное сопротивление .

Если электрическая емкость контура стремится к бесконечности , то есть емкостное сопротивление к нулю, то формула (15.9) упрощается

(15.10)

Используя это выражение, получаем рабочую формулу для экспериментального определения индуктивности соленоида. При этом учтем, что амплитуда падения напряжения на активном сопротивлении R связана с амплитудой силы тока в цепи формулой

(15.11)

Из выражений (15.10) и (15.11) получим

(15.12)