Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lekcii_po_materialovedeniyu.doc
Скачиваний:
104
Добавлен:
27.03.2015
Размер:
2.81 Mб
Скачать

13. Термомеханическая обработка

Термомеханическая обработка стали (ТМО) заключается в сочетании пластической деформации стали в аустенитном состоянии ("аусформинг") с закалкой.

Различают два способа ТМО - это высокотемпературная термомеханическая обработка (ВТМО) и низкотемпературная термомеханическая обработка (НТМО) (рис.13.1).

Рис. 13.1. Схема термомеханической обработки стали: а – ВТМО; б – НТМО (заштрихованная зона – интервал температур рекристаллизации)

ТМО обоих видов заканчивается низким отпуском при 100-200 оС. При ТМО повышается весь комплекс механических свойств и особенно пластичность и вязкость, что наиболее важно для высокопрочного состояния. По сравнению с обычной обработкой прирост прочности при ТМО составляет 200-500 МПа, т.е. 10-20 %. Характеристики пластичности и вязкости повышаются в 1,5-2 раза.

Улучшение комплекса механических свойств обусловлено формированием специфического структурного состояния. Деформация создает в аустените высокую плотность дислокаций, образующих из-за процесса полигонизации устойчивую ячеистую субструктуру, которая наследуется мартенситом при закалке. При этом субграницы тормозят движение дислокаций и локализируют деформацию внутри зерна; в результате прочность повышается. В то же время субграницы ведут себя как полупроникаемые барьеры. Они допускают прорыв дислокаций, их передачу из мест скоплений в соседние субзерна. Это вызывает пластическую релаксацию локальных напряжений и служит причиной повышенных пластичности и вязкости.

Наибольшее упрочнение (σв ≤ 2800 МПа) достигается при НТМО. Однако ее проведение технологически более сложно, чем ВТМО. Она требует мощных деформирующих средств и пригодна для легированных сталей с большой устойчивостью переохлажденного аустенита.

ВМТО обеспечивает меньшее упрочнение (σв ≤ 2400 МПа ), но более высокие пластичность и вязкость. Она уменьшает также чувствительность к трещине, снижает порог хладноломкости, повышает сопротивление усталости и затрудняет разупрочнение при отпуске, что связано с устойчивостью ячеистых дислокационных структур мартенсита. Особенно эффективна ВТМО для чистого вакуумированного металла. Кроме того, ВТМО более технологична и для неё пригодны любые конструкционные стали.

Область ВТМО расширяет явление обратимости эффекта упрочнения. Оно состоит в том, что свойства, полученные при ВТМО, наследуются после повторной закалки. Это позволяет закладывать определенный ресурс свойств в стальные полуфабрикаты (поковки, прутки, листы и т.п.), подвергая их ВТМО на металлургическом заводе.

14. ЛЕГИРОВАННЫЕ СТАЛИ И СПЛАВЫ

Легирование - целенаправленное изменение состава материала путем введения легирующих элементов для изменения структуры и получения требуемых свойств.

14.1. Влияние легирующих элементов на превращения в сталях

Все элементы, которые растворяются в железе, влияют на температурный интервал существования его аллотропических модификаций, т.е. сдвигают точки А3 и А4 по температурной шкале (рис.14.1). Элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения. Карбидообразующие элементы вносят не только количественные, но и качественные изменения в кинетику изотермического превращения.

Рис. 14.1. Влияние легирующих элементов на полиморфизм железа: а – Ni, Mn (аустенитные); б – Mn; в – V, Si, Al, Cr, W, Mo (ферритные); г – B, Zn, Nb

Легирующие элементы оказывают большое влияние на положение точек S (0,8 % С) и E (2,14 % С) диаграммы «железо-цементит» (рис. 7.1):

Ni, Co, W, Cr, Mn снижают, а V, Ti, Nb повышают.

Легирующие элементы в стали могут быть в твердом растворе, карбидной фазе или в виде интерметаллических соединений и влияют на свойства феррита и аустенита по мере увеличения их содержания в сталях (рис. 14.2).

Рис. 14.2. Влияние легирующих элементов на свойства феррита

При высоком содержании легирующих элементов часто образуются интерметаллические соединения: Fe7Mo6, Fe2Mo6, Fe2W, Fe7W6; силициды: FeSi, Fe3Si, Fe5Si3 (η - фаза), Fe Cr (σ - фаза).

По отношению к углероду легирующие элементы делятся на три группы:

- графитизирующие - Si, Ni, Си, Al ;

- нейтральные - Со ;

- карбидообразующие (по возрастающей степени сродства к углероду и устойчивости карбидных фаз располагаются в следующем порядке: Fe → Mn → Cr → Mo → W→ Nb → V → Zn → Ti).

При малом содержании Mn, Сr, W, Mo карбидообразующие растворяются в цементите и образуют легированный карбид типа (FeMn)3С; (FeCr)3С. Более сильные карбидообразующие - Ti, Zn, V, Nb - образуют специальные карбиды (TiС, NbС, ZnС, VС).

Карбиды в легированных сталях можно разделить на две группы: карбиды типа (М - металл) - М3С2, М73 , M23C6 и M6C (M4C), которые легко растворяются в аустените при нагреве и карбиды типа MC (TiС, NbС, ZnC), W2C и Мо2C, являющиеся фазами внедрения и которые в реальных условиях не растворяются в аустените.

Все карбиды обладают высокой температурой плавления и высокой твердостью. Чем дисперснее карбиды, тем выше прочность и твердость.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]