Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
для nokia lumia.docx
Скачиваний:
94
Добавлен:
30.03.2015
Размер:
8.43 Mб
Скачать

2.Белки системы комплемента. Интерфероны. Механизм действия. Биологическая роль.

Интерфероны - небольшие белки (гликопротеины), состоящие примерно из 160 аминокислотных остатков. Они сеьфетируются некоторыми клетками позвоночньж в ответ на заражение вирусами и препятствуют распространению вирусной инфекции. Этот класс белков синтезируется в исключительно малых количествах: от на-нограммов (1-9г) до пикограммов (10_12г), но является очень активным неспецифическим противовирусным агентом (106-109 единиц антивирусной активности на 1 мг белка). Это соответствует способности одной молекулы интерферона защищать от инфекции одну клетку.

Некоторые компоненты вирусных частиц (например, двухцепочечная РНК) индуцируют синтез по крайней мере 3 типов интерферонов. У человека имеются 14 генов, кодирующих α-интерфероны, которые продуцируются В-лимфоцитами и макрофагами, 5 генов β-интерферонов, обеспечивающих образование соответствующих белков фибробластами, и 1 ген γ-интерферона, экспрессия которого идёт в Т-лимфоцитах.

Связываясь с рецепторами на плазматической мембране заражённых клеток, эти белки, подобно белковым гормонам, стимулируют синтез ферментов, способных разрушать мРНК вирусов и прекращать синтез белков на рибосомах, препятствуя тем самым экспрессии вирусных генов в клетках эукариотов.

Исследование механизма действия интерферонов показало, что они:

  • ингибируют синтез белков, необходимых для репликации вирусов;

  • стимулируют синтез фермента олигонуклеотидполимеразы, катализирующего образование небольших количеств коротких олигоаденилатов: 2',5'-олиго (А). Эти олигонуклеотиды являются активаторами рибонуклеазы - фермента, расщепляющего матричные и рибосом-ныеРНК;

  • стимулируют синтез протеинкиназы, котораяфосфорилирует и, тем самым, инактивирует фактор инициации eIF2:

eIF2 + АТФ → eIF2-OPO3H2 + АДФ.

В результате синтез всех белков в инфицированных клетках прекращается. Клетки погибают, но вместе с ними останавливается размножение вирусов, и начинается выздоровление. Таким образом, жертвуя небольшим количеством клеток, организм защищает себя от болезни.

В настоящее время интерфероны, полученные промышленным путём с использованием техники клонирования генов, широко используют при лечении обычной простуды, гриппа, полиомиелита, ветряной оспы, герпеса, вируса гепатита и других инфекций. Хорошие результаты показывает использование интерферонов в терапии некоторых видов злокачественных опухолей, главным образом, гемобластозов, хотя их роль в химиотерапии опухолей до настоящего времени остаётся малопонятной.

3. У больного через 5 лет после обширной операции по поводу прободной язвы желудка развилась тяжелая форма анемии. В костном мозге большой процент мегалобластов. С чем связанны данные нарушения? Почему такая анемия протекает с явными неврологическими нарушениями?

Это связано с уменьшением внутреннего фактора Кастла в желудке. Он отвечает за усвоение витамина В12. Одна из его коферментных форм – метилкобаламин – участвует в реакциях синтеза нуклеотидов. Это проявляется в тканях, где идёт интенсвиная клеточная пролиферация – отсюда и мегалобластная анемия. Другая его коферментная форма – дезоксиаденозилкобаламин – участвует в метаболизме метилмалоновой кислоты. Т.к. она токсична для нервной ткани, при гиповитаминозе В12 возникают неврологические нарушения.

Билет 23

. Особенности обмена углеводов в скелетных мышцах.

УГЛЕВОДЫ - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии.  Функции углеводов в организме:

  • Углеводы являются непосредственным источником энергии для организма.

  • Участвуют в пластических процессах метаболизма.

  • Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

  • В пищеварительном тракте полисахариды ( крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются ) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена (единственный гомополисахарид, имеющийся в организме животных - выполняет резервную функцию.причем он является резервом не только энергетическим, но также и резервом пластического материала).  В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

  • Вполне естественно, что механизмы регуляции синтеза и распада гликогена в клетках различных органов имеют свои особенности. В качестве примера можно указать, что в миоцитах покоящихся мышц или мышц, выполняющих небольшую по интенсивности работу, практически нет фосфорилазы "a", но расщепление гликогена все же идет. Дело в том, что мышечнаяфосфорилаза, находящаяся в дефосфорилированном состоянии или в форме "b", является аллостерическим ферментом и активируется имеющимися в миоцитах АМФ и неорганическим фосфатом. Активированная таким образом фосфорилаза "b" обеспечивает скорость мобилизации гликогена, достаточную для выполнения умеренной физической работы.

  • Однако при выполнении интенсивной работы, в особенности если нагрузка резко возрастает, этого уровня мобилизации гликогена становится недостаточно. В таком случае срабатывают надклеточные механизмы регуляции. В ответ на внезапно возникшую потребность в интенсивной мышечной деятельности в кровь поступает гормон адреналин из мозгового вещества надпочечников. Адреналин, связываясь с рецепторами на поверхности мышечных клеток, вызывает ответную реакцию миоцитов, близкую по своему механизму к только что описанной реакции гепатоцитов на глюкагон. В мышечных клетках появляется фосфорилаза "a" и инактивируется гликогенсинтетаза, а образовавшийся гл-6-ф используется как энергетическое "топливо", окислительный распад которого обеспечивает энергией мышечное сокращение.

  • Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом "депо".  В организме происходит постоянное использование глюкозы различными тканями. Одним из главных потребителей глюкозы являются скелетные мышцы. Расщепление в них углеводов осуществляется с использованием аэробных и анаэробных реакций. При преобладании анаэробных реакций метаболизма глюкозы в мышцах накапливается большое количество молочной кислоты.  Суточная потребность организма в углеводах - не менее 100-150 г. Депо глюкозы (гликоген) в печени, мышцах в среднем 300-400 г.  При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.  Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышеннойаллергизации организма, сахарному диабету. 

2.Витамин А. источники условия всасывания транспорт. Формы биохимические функции признаки гипо и гиперавитоминоза

Ретино́л - витамин A-жирорастворимый витамин, антиоксидант. В чистом виде нестабилен, встречается как в растительных продуктах, так и в животных источниках. Поэтому производится и используется в виде ретинола ацетата и ретинола пальмитата. В организме синтезируется из бета-каротина. Необходим для зрения и роста костей, здоровья кожи и волос, нормальной работы иммунной системы и т.д.

Ретинол является жирорастворимым, поэтому для его усваивания пищевым трактом требуются жиры, а также минеральные вещества. В организме его запасы остаются достаточно долго, чтобы не пополнять его запасы каждый день. Существует две формы этого витамина: это готовый витамин А (ретинол) и провитамин А (каротин), который в организме человека превращается в витамин A, поэтому его можно считать растительной формой витамина A.При недостатке витамина А на коже образуются трещины , секутся волосы и слоятся ногти. Витамин A имеет бледно-желтый цвет, который образуется из красного растительного пигмента бета-каротина.

Источники

Лучшие источники витамина А — рыбий жир и печень, следующими в ряду стоят сливочное масло, яичный желток, сливки и цельное молоко. Зерновые продукты и снятое молоко, даже с добавками витамина, являются неудовлетворительными источниками, равно как и говядина, где витамин А содержится в ничтожных количествах.

Суточная потребность

Рекомендуемой суточной дозой витамина А является:

  • 900 мкг (3000 ME) для взрослых (для беременных больше на 100 мкг, для кормящих — на 400 мкг);

  • 400—1000 мкг для детей, в зависимости от возраста и пола;

  • При заболеваниях, связанных с недостаточностью ретинола, дозировка может быть увеличена до верхнего допустимого уровня потребления — 3000 мкг.