Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ref_Po_Okhrane_4.docx
Скачиваний:
20
Добавлен:
31.03.2015
Размер:
427.88 Кб
Скачать

Водород-катионирование.

ПриН-катионировании обменными ионами являются катионы водорода. В процессе фильтрования из воды поглощаются все содержащиеся в ней катионы согласно ряду селективности, то естьСа2+,Mg2+,Na+и другие, а в воду переходит эквивалентное количествоН+ионов. Кроме того, происходит разрушение ионами водорода бикарбонатной щелочности воды с образованием свободной углекислоты. Протекают следующие реакции:

2HR+Ca(HCO3)2CaR2+ 2H2O + 2CO2;

2HR+Mg(HCO3)2MgR2+ 2H2O+ 2CO2;

2HR + CaCl2CaR2 + 2HCl;

2HR + MgSO4MgR2 + H2SO4;

HR + NaClNaR + HCl;

2HR + Na2SO4  2NaR + H2SO4.

В результате этих реакций общая жесткость снижается до 0,01 мг-экв/кг, а карбонатная жесткость [Са(НСО3)2иMg(НСО3)2] полностью удаляется, вследствие чего происходит устранение щелочности воды и снижение солесодержания. В процессеН-катионирования все катионы заменяются катионами водородаН+, а присутствующие в исходной воде соли: сульфаты, хлориды и нитраты кальция, натрия и другие, преобразуются в свободные кислоты: серную,соляную, азотную, кремниевую… Общая кислотность фильтрата равна сумме содержащихся в воде анионов минеральных кислотSO42–,Cl,NO3и др.Н-катионированная вода является кислой, непригодной для питания паровых котлов, поэтому этот метод всегда сочетают сNa- катионированием или анионированием, что дает возможность нейтрализовать кислотность и снизить щелочность обработанной воды.

При работе Н-катионитного фильтра наблюдаются два периода. В первом происходит полное поглощение всех катионов до момента достижения зоной поглощения ионовNa+нижней границы слоя катионита (работа до проскокаNa+). В этот период кислотность фильтрата остается постоянной. Второй период начинается с проскока ионовNa+в воду. С этого момента содержаниеNa+в обработанной воде начинает возрастать, так как этот ион не может полностью улавливаться катионитом, пока не достигнет концентрацииNa+как в исходной воде. К этому моментуН-катионит совсем прекращает поглощатьNa+из обрабатываемой воды и происходит только улавливание ионовСа2+иMg2+. Эти ионыСа2+иMg2+. наряду с обменом на ионыН+начинают вытеснять ранее поглощенные ионыNa+из катионита, поэтому содержаниеNa+в фильтрате становится больше его концентрации в исходной воде. Происходят одновременно процессы водород- и натрий-катионирования с постепенным переходом вNa-катионирование, так как ионыН+в катионите уже полностью заменены на ионыNa+,Са2+,Mg2+(точка О). Содержание натрия в фильтрате снижается по мере истощения катионита и возвращается к его концентрации в исходной воде по мере приближения проскока ионов жесткостиМg2+(точка Р). Во втором периоде снижается кислотность фильтрата и начинает возрастать щелочность. При переходе в режимNa-катионирования щелочность восстанавливается полностью.

При умягчении воды Н-катионитные фильтры отключаются на регенерацию по проскоку ионов жесткостиСа2+иMg2+в фильтрат, а при химическом обессоливании - по проскоку катионовNa+, то есть при снижении кислотности фильтрата.

Эффект умягчения воды при Н-катионировании обычно столь же полный, как и приNa-катионировании. Он зависит от качества регенерации ионита, его природы и состава исходной воды. Регенерация производится 1...1,5 % раствором серной кислоты, как более дешевой и удобной по сравнению с соляной. Последняя также может применяться для регенерации (например, для вод с высоким содержаниемNa+). Реакции регенерации описываются следующими уравнениями:

СаR2+H2SO42HR+CaSO4;

MgR2+H2SO42HR+MgSO4;

2NaR +H2SO42HR+ Na2SO4.

При регенерации катионита соляной кислотой продуктами регенерации являются хлориды кальция, магния, натрия, хорошо растворимые в воде. При использовании серной кислоты один из продуктов регенерации сульфат кальция (СаSO4) обладает ограниченной растворимостью и способен «загипсовывать» катионит. Это обстоятельство заставляет ограничивать крепость регенерационного раствора до 1...1,5 % или осуществлять ступенчатую регенерацию: сначала 1% растворомН2SO4, а затем, когда основная массаСа2+иMg2+вытеснена и опасности гипсования уже нет, более крепким 5...6 % раствором кислоты для более полного вытеснения поглощенных катионитом ионов. Скорость пропуска регенерационного раствора выбирают также исходя из условий предотвращения кристаллизации гипса, а не диффузии при обмене ионов, как приNa-катионировании. Для сокращения времени контакта раствора кислоты с катионитом скорость фильтрования принимают 10...15 м/ч. По этой же причине, а также во избежание усиления коррозии оборудования, не допускается повышение температуры обрабатываемой воды и регенерационного раствора.

Кислотность Н-катионированной воды, то есть концентрация в ней противоионаН+, определяется разностью между суммой всех анионов и щелочностью воды и зависит от суммарной концентрации хлоридов и сульфатов. Противоионный эффект заметно проявляется вН-катионированной воде, которая содержит значительное количество ионовSOиCl-. Чем больше некарбонатная жесткость, тем ниже рН фильтрата, тем сильнее противоионный эффект. В этом случае сильно подавляется диссоциация особенно слабокислотного катионита и уменьшается рабочая обменная емкость Н-катионита. Обменная емкость и эффект умягчения воды зависят лишь от концентрации нейтральных солей, так какбикарбонаты кальция, магния и натрия не повышают концентрацию противоиона в фильтрате. Чем больше противоионный эффект, тем больший требуется удельный расход кислоты на регенерацию для достижения заданной остаточной жесткости фильтрата. Существенно снижается расход реагента при применении противоточной регенерации или двухступенчатогоН-катионирования.

Иногда применяется «голодная регенерация»Н-катионитных фильтров. В этом случае при катионировании происходит не глубокое умягчение исходной воды, а разрушение её карбонатной щелочности без образования кислого фильтрата. Это достигается тем, что фильтры регенерируются таким количеством кислоты, которого недостаточно для вытеснения всех катионов, ранее поглощенных из воды. Это приводит к расположению в верхних частях фильтрующего слоя обменного ионаН+водорода (отрегенерированный слой), а в нижних слоях- обменных катионов кальция и магния. В слоях, находящихся вН+-форме протекают реакции обмена улавливаемых из воды ионов на ионы водорода, который переходит в воду с образованием сильных кислот и угольной кислоты. В ниже расположенных слоях ионы водорода сильных кислот обмениваются на ионы кальция, магния, натрия. Слабая угольная кислота, диссоциация которой подавлена в присутствии сильных кислот, значительную часть слоя проходит «транзитом» и обменивает некоторое количество ионов водорода уже в нижних слоях, обусловливая появление щелочности. С течением времени количество обменных ионовН+уменьшается и одновременно происходит их перемещение из вышележащих слоев в нижележащие. К моменту окончания рабочего цикла все количество введенных при регенерации ионов+оказывается израсходованным на разрушение щелочности исходной воды. В момент повышения щелочности фильтр выводится на регенерацию. Прошедшая через такой слой вода не содержит сильных кислот и имеет незначительную щелочность (Щ=0,2-0,3 мг-экв/кг).

Режим «голодной регенерации» отличается от других режимов регенерации с недостатком кислоты тем, что на протяжении всего рабочего цикла обеспечивается нулевая кислотность фильтрата и минимальная щелочность. Любые другие модификации регенерации с недостатком кислоты не обеспечивают этого требования.

Такой режим применяется в схемах подготовки подпиточной воды для тепловых сетей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]