Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая.docx
Скачиваний:
87
Добавлен:
02.05.2015
Размер:
583.56 Кб
Скачать

3. Проектирование геодезической сети сгущения

Для сгущения государственной геодезической сети необходимо запроектировать плановую геодезическую сеть сгущения в виде двух отдельных полигонометрических ходов 4 класса.

3.1. Проектирование и оценка проекта плановой геодезической сети сгущения.

Запроектируем полигонометрические ходы с таким расчётом, чтобы созданная государственная съёмочная сеть наилучшим образом удовлетворяла задаче построения съёмочного обоснования (планово-высотной привязке опознаков).

При проектировании следует руководствоваться требованиями Инструкции по топографической съёмке масштаба 1:5000, 1:2000, 1:1000, 1:500. [1]

1) Между пунктами должна быть обеспечена прямая видимость. Если рельеф местности сложный и пересечённый, строить профиль местности.

2) Длина отдельного хода между твёрдыми точками не должна превышать 15км.

Длина хода между твердой и узловой точками не должна превышать 10км.

Длина хода между узловыми точками не должна превышать 7км.

3) Максимальная длина стороны 2.0км.

Минимальная длина стороны 0.25км.

Оптимальная длина стороны 0.50км.

4) Число сторон в ходе не должно превышать 15.

5) Относительная линейная невязка не более

6) Средняя квадратическая ошибка измерения углов

7) Предельная угловая невязка хода

Главное условие выбора точек хода - ходы должны прокладываться на местности, удобной для угловых и линейных измерений.

Характеристика запланированного хода между пунктами Т1 и Т2

таблица 3.1.

Название пунктов хода

Длина сторон, м

Т1

832,5

101

602,5

102

1977,5

103

1562,5

104

500,0

105

880,0

106

437,5

107

1195,0

108

155,0

109

517,5

110

295,0

111

670,0

112

477,5

113

912,5

114

587,5

Т2

13002

Характеристика запланированного хода между пунктами Т1 и Т2

таблица 3.2.

Название пунктов хода

Длина сторон, м

Т3

1062,5

115

675,0

116

900,0

117

825,0

118

900,0

119

400,0

120

387,5

121

1912,5

122

612,5

123

262,5

Т1

7937,5

Выполним оценку проекта плановой геодезической сети сгущения. Для этого необходимо вычислить среднюю квадратическую ошибку положения пункта в слабом месте хода. Выберем полигонометрический ход между пунктами Т1 и Т2.

Ошибка в слабом месте хода выражается следующим образом:

т.к. предельная =2М, то средняя квадратическая ошибка положения полигонометрического хода равна:

Вывод: плановое положение пункта в слабом месте составляет 0,26м, предельное значение составляет 0,26м.

Разработка методики и выбор средств измерений.

Для разработки методики и выбора средстве измерений в плановой ГСС следует рассчитать характеристики точности линейных и угловых измерений и. Следовательно необходимо выбрать формулу для вычисления М в зависимости от формы хода. Её устанавливают по критериям вытянутости запроектированного хода, а затем записывают формулу для вычисления М.

Рассмотрим критерии вытянутости хода:

1. ,,

Условие не выполняется.

2. ,

Условие не выполняется.

3.,

Условие не выполняется.

Вывод: по всем 3-м критериям ход изогнутый.

Предрасчёт точности линейных измерений и выбор прибора для линейных измерений.

Предрасчёт точности линейных измерений основывается на принципе равных влияний, согласно которому и угловые и линейные ошибки одинаково влияют на величину средней квадратической ошибки планового положения пункта хода.

Поэтому можно записать:

Для измерения длин сторон надо выбрать такой прибор, чтобы выполнялось условие:

Рассчитаем среднюю квадратическую ошибку линейных измерений :

, где n-число сторон хода.

Вывод: средняя квадратическая ошибка линейный измерений

Выберем прибор для линейных измерений с "запасом" точности. Для этого составим таблицу точности измерений линий:

таблица 3.3

Название пунктов

S, м

, мм

,

Т1

832,5

14,2

201,6

101

602,5

13,0

169,0

102

1977,5

19,9

396,0

103

1562,5

17,8

316,8

104

500,0

12,5

156,3

105

880,0

14,4

207,4

106

437,5

12,2

148,8

107

1195,0

16,0

256,0

108

155,0

17,8

316,8

109

517,5

12,6

158,8

110

295,0

11,5

132,3

111

670,0

13,4

179,6

112

477,5

12,4

153,8

113

912,5

14,6

213,2

114

587,5

12,9

166,4

Т2

3172,8

Возьмём прибор: светодальномер СТ5. Исходя из условия:

найдём и

Проверим выполнение условия: , т.е.

=3172,8,

условие выполнено.

Вывод: прибор светодальномер СТ5 пригоден для выполнения линейных измерений в запроектированном полигонометрическом ходе.

Измерение линей нужно выполнять прямо и обратно для контроля грубых ошибок. В качестве более надежного значения брать среднее.

Технические характеристики в внешний вид светодальномера СТ5 представлены в приложении.

Проектирование контрольного базиса.

В близи района работ, нужно поместить отрезок и измерить более точным прибором с относительной линейной невязкой гораздо меньшей .

Вдоль железной дороги от Борзово до Понкратово запроектируем базис, длиной 2км. Пусть длина базиса измеряется светодальномером 4СТ3.

Технические характеристики в внешний вид светодальномера 4СТ3 представлены в приложении.

Расчёт влияния ошибок угловых измерений, выбор прибора.

Применяя принцип равных влияний, рассчитаем величину средней квадратической ошибки измерения углов :

, откуда

, где -расстояние от центра тяжести хода до пункта хода.

тогда:

определим графически, со схемы полигонометрического хода из приложения:

таблица 3.4.

Пункты хода

, м

, м

Т1

4600

21160000

101

4075

16605625

102

3550

12602500

103

2850

8122500

104

1300

1640000

105

1013

1026164

106

150

28500

107

300

90000

108

1425

2030625

109

1450

2102500

110

1950

3802500

111

2100

4410000

112

2225

4950625

113

2550

6502500

114

3163

10004569

Т2

2738

7496644

102569252

Теперь мы можем найти :

Вывод: выберем в качестве прибора для измерения углов теодолит 3Т2КП, т.к. его

=2"<=3,7"

Технические характеристики в внешний вид теодолита 3Т2КП представлены в приложении.

Расчёт точности установки теодолита и марок, числа приёмов при измерении углов.

Необходимо рассчитать влияние отдельных источников ошибок угловых измерений. На точность измерения горизонтального угла в полигонометрическом ходе влияют ошибки систематических и случайных характеров. Для расчётов точности обычно рассматривают шесть основных источников ошибок:

- ошибка центрирования ;

- ошибка редукции ;

-ошибки инструментальные ;

- ошибка собственно измерения угла ;

- ошибки вызванные влияние внешних условий ;

- ошибки исходных данных .

Запишем:

Согласно принципу равных влияний каждый источник ошибок будет иметь величину в раз меньше, чем

==

Ошибка редукции поможет нам выбрать метод центрирования марок:, где

-линейный элемент редукции

-минимальная длина стороны

Аналогичным образом находим линейный элемент центрирования. Ошибка центрирования возникает из-за несовпадения оси вращения теодолита с вершиной измеряемого угла:

, откуда

Соблюсти полученные ивозможно при центрировании с помощью оптического центрира, точность которого 1мм<1,5мм<2,1мм.

Инструкцией по выполнению топографической съёмки предусмотрено проведение 6 приёмов по измерению горизонтального угла на станции.

Рассчитаем необходимое количество приёмов при измерении горизонтального угла :

,

Для 3Т2КП: ,, получаем:

Вывод: горизонтальный угол на станции необходимо измерять 6 приёмами, согласно инструкции[1], заведомо обеспечивая заданную точность.

При угловых измерениях рекомендуется использовать трехштативную систему измерения углов для исключения влияния ошибок центрирования и редукции и сокращения времени измерений.

На пунктах, с которых измерения производятся по трем направлениям, углы следует измерять способом круговых приёмов, при этом должны соблюдаться допуски:

-расхождение отсчётов при двух совмещениях не более 3"

-незамыкание горизонта не более 8"

-колебания 2С в приёме не более 8"

-расхождение соответствующих приведённых направлений между приёмами не более 8"

Между приёмами осуществляется перестановка лимба на величину:

На всех пунктах полигонометрического хода горизонтальные углы так же необходимо измерять способом круговых приёмов при наличии видимости на 3 пункта.

Оценка проекта передачи высот на пункты полигонометрии геометрическим нивелированием.

Для определения высотного положения опознаков имеются три исходных пункта, с известными отметками высоты, но этих пунктов недостаточно. Поэтому для запроектированных пунктов ГСС требуется определить отметки высот. Для этого запроектируем отдельные ходы геометрического нивелирования IV класса. В итого проложения этих ходов будут получены отметки высот пунктов полигонометрии. Таким образов будет создана высотная ГСС.

Вычислим значения предельной невязки в наиболее длинном из запроектированных ходов.

Пусть - средняя квадратическая ошибка высотного положения пунктов в слабом месте хода.

Вывод: ошибка отметки высоты в слабом месте хода не превысит 36,1мм

В качестве прибора для осуществления геометрического нивелирования выберем Н3КЛ.

Технические характеристики в внешний вид нивелира Н3КЛ представлены в приложении.

Требования инструкции к проложению нивелирного хода IV класса.

Нивелирный ход прокладывается в одном направлении по программе нивелирование IV класса.

-нормальная длина визирного луча 100м;

-высота визирного луча над подстилающей поверхностью не менее 0,2м;

-разность плеч на станции не более 5м;

-накоплении разности плеч не более 10м;

-расхождение значений превышений определённых по черной и красной сторонам пары реек не более 5мм.