Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_k_ekzamenu_4sem_Matematika.doc
Скачиваний:
7
Добавлен:
08.05.2015
Размер:
247.81 Кб
Скачать

2.4. Формула Байеса (Бейеса)

Имеется полная группа несовместных гипотез . Вероятности этих гипотез до опыта известны и равны соответственно: . Произведен опыт, в результате которого наблюдено появление события А. Вероятность того, что появилась i-ая гипотеза, при условии того, что произошло событие А

, где вероятность события А находится с помощью формулы полной вероятности

Данная формула и есть формула Байеса (Бейеса).

4)

Повторение испытаний. Формулы Бернулли, Лапласа, Пуассона

Пусть А – случайное событие, вероятности появления и непоявления

Которого для некоторого испытания известны:

 (6.1)

И пусть производится не одно, а N повторных испытаний (или, что одно и то же, испытание повторяется N раз). Возникает естественный вопрос: какова вероятность того, что событие А В этих N повторных испытаниях появитсяK раз (целое число K можно задавать любым в пределах от 0 до N)? При этом не важно, в каком порядке событие Апоявится K раз в N испытаниях. Важно лишь общее число K Появлений этого события. Эту вероятность обозначают символом  (- вероятность того, что в N испытаниях событие А Наступит K раз). И находится она по формуле Бернулли (Яков Бернулли – швейцарский математик 17-го века):

 (6.2)

Доказательство. Если в N повторных испытаниях событие А появится K Раз, то соответственно оно не появится N-Kраз. И тогда вероятность любой конкретной комбинации K появлений события А и N-K непоявлений этого события можно найти по формуле (4.15) произведения вероятностей независимых в совокупности событий. То есть она равна . Таких конкретных комбинаций будет, очевидно, столько, сколько существует сочетаний из N элементов (номеров испытаний) по K элементов в каждом сочетании. Эти сочетания образуются из K номеров тех испытаний, в которых будет появляться событие А. Каждому такому сочетанию K номеров будет соответствовать единственное сочетание тех N-K номеров испытания, в которых событие А не будет появляться. Так как всего таких сочетаний , и каждое из них несовместно с любым другим сочетанием, то по формуле (4.10) сложения вероятностей попарно несовместных событий искомая вероятность равна величине , взятой  раз. В итоге и приходим к формуле Бернулли (6.2).

Пример 1. Монету подбрасывают пять раз подряд. Какова вероятность того, что при этом герб выпадет ровно три раза?

Решение. Будем считать испытанием однократное подбрасывание монеты. Тогда N=5 – число повторных испытаний. Далее, будем считать событием А в каждом испытании (при каждом бросании монеты) выпадение герба. Тогда

N=5; K=3

На основании формулы Бернулли получаем:

.

Формула Бернулли – точная формула. Однако при больших значениях N (большом числе испытаний) вычисления по ней становятся громоздкими из-за необходимости вычисления факториалов больших чисел и степеней с большими показателями. В процессе этих вычислений неизбежно придется производить округления, что приведет к погрешности при определении искомой вероятности . Причем к погрешности тем большей, чем больше будет значение N (числа испытаний). В связи с этим из формулы Бернулли выведены упрощенные приближенные формулы для , которые, кстати, тем точнее, чем больше число N.

Другой приближенной формулой для подсчета вероятностей , применяемой при больших N, является Формула Пуассона (формула редких событий):

, где  (6.6)

Она применяется, когда N Велико (условно N50), а Р мало (0<Р<0,1), и когда Npq<10. То есть когда не оправдано ни применение формулы Бернулли, ни применение локальной формулы Лапласа. При этих условиях приближенная формула Пуассона, как и локальная формула Лапласа, обеспечивает определение искомой вероятности С погрешностью в пределах одного процента.

Кстати, так как вероятность события А Мала (0<Р<0,1), то при повторении испытаний событие А наступает редко. Поэтому формула Пуассона и называется формулой редких событий. Вывод этой формулы опустим.

Пример 3. Производится 50 повторных испытаний, причем вероятность появления некоторого события А В каждом из них равна 0,98. Определить вероятность того, что событие А наступит во всех 50 испытаниях.

Решение. В данной задаче

P(A)=P=0,98; P(Ā)=Q=0,02; N=50; K=50; 

Если применить формулу Бернулли, то получим результат, который очевиден и без формулы Бернулли:

Попробуем избежать громоздкой процедуры возведения числа 0,98 в 50-ую степень (её, впрочем, можно и избежать, если использовать логарифмы). То есть заменим формулу Бернулли на локальную формулу Лапласа или Пуассона.

Так как Npq=50·0,98·0,02=0,98<10, то локальную формулу Лапласа применять нельзя - мы получим слишком грубый (неточный) результат. Но и формулу Пуассона (формулу редких событий) мы тоже применить не можем, так как вероятность Р не мала, а наоборот, велика. Но зато мала вероятность Q непоявления этого события. В связи с этим переформулируем задачу: найдем вероятность  того, что событие  появится 0 раз (ни разу). Эта вероятность, очевидно, совпадает с искомой вероятностью Того, что событие А появится во всех 50 испытаниях. Тогда в этой постановке получаем:

P(Ā)=P=0,02; P(A)=Q=0,98; N=50; K=0; ?

Применяя формулу Пуассона (теперь ее применять можно), получим:

= |λ=Np=50·0,02=1| =  = ≈ 0,37.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]