Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химическая связь.doc
Скачиваний:
232
Добавлен:
10.05.2015
Размер:
4.05 Mб
Скачать

Метод молекулярных орбиталей.

МВС достаточно хорошо объясняет образование и структуру многих молекул, но этот метод не универсален. Например, метод валентных связей не даёт удовлетворительного объяснения существованию иона , хотя еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь 2,65эВ. Однако никакой электронной пары в этом случае образовываться не может, поскольку в состав иона входит всего один электрон.

Метод молекулярных орбиталей (ММО) позволяет объяснить ряд противоречий, которые нельзя объяснить, используя метод валентных связей.

Основные положения ММО.

  1. При взаимодействии двух атомных орбиталей, образуются две молекулярные орбитали. Соответственно, при взаимодействии n-атомных орбиталей, образуется n-молекулярных орбиталей.

  2. Электроны в молекуле в равной степени принадлежат всем ядрам молекулы.

  3. Из двух образовавшихся молекулярных орбиталей, одна обладает более низкой энергией, чем исходная, это связывающая молекулярная орбиталь, другая обладает более высокой энергией чем исходная, это разрыхляющая молекулярная орбиталь.

  4. В ММО используют энергетические диаграммы без масштаба.

  5. При заполнении энергетических подуровней электронами, используют те же правила, что и для атомных орбиталей:

  1. принцип минимальной энергии, т.е. в первую очередь заполняются подуровни, обладающие меньшей энергией;

  2. принцип Паули: на каждом энергетическом подуровне не может быть больше двух электронов с антипараллельными спинами;

  3. правило Хунда: заполнение энергетических подуровней идёт таким образом, чтобы суммарный спин был максимальным.

  1. Кратность связи. Кратность связи в ММО определяется по формуле:

, когда Кp = 0, связь не образуется.

Примеры.

1. Может ли существовать молекула Н2?

Рис. 23. Схема образования молекулы водорода Н2.

Вывод: молекула Н2 будет существовать, так как кратность связи Кр > 0.

2. Может ли существовать молекула Не2?

Рис. 24. Схема образования молекулы гелия He2.

Вывод: молекула Не2 не будет существовать, так как кратность связи Кр = 0.

3. Может ли существовать частица Н2+?

Рис. 25. Схема образования частицы Н2+.

Частица Н2+ может существовать, так как кратность связи Кр > 0.

4. Может ли существовать молекула О2?

Рис. 26. Схема образования молекулы О2.

Молекула О2 существует. Из рис.26 следует, что у молекулы кислорода имеется два неспаренных электрона. За счет этих двух электронов молекула кислорода парамагнитна.

Таким образом метод молекулярных орбиталей объясняет магнитные свойства молекул.

Межмолекулярное взаимодействие.

Все межмолекулярные взаимодействия можно разделить на две группы: универсальные и специфические. Универсальные проявляются во всех молекулах без исключения. Эти взаимодействия часто называют связью или силами Ван-дер-Ваальса. Хотя эти силы слабые (энергия не превышает восемь кДж/моль), они являются причиной перехода большинства веществ из газообразного состояния в жидкое, адсорбции газов поверхностями твердых тел и других явлений. Природа этих сил электростатическая.

Основные силы взаимодействия:

1). Диполь – дипольное (ориентационное) взаимодействие существует между полярными молекулами.

Ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояния между молекулами и ниже температура. Поэтому чем больше энергия этого взаимодействия, тем до большей температуры нужно нагреть вещество, чтобы оно закипело.

2). Индукционное взаимодействие осуществляется, если в веществе имеется контакт полярных и неполярных молекул. В неполярной молекуле индуцируется диполь в результате взаимодействия с полярной молекулой.

Cl+ - Cl- … Al+Cl-3

Энергия этого взаимодействия возрастает с увеличением поляризуемости молекул, то есть способности молекул к образованию диполя под воздействием электрического поля. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

3). Дисперсионное взаимодействие – это взаимодействие неполярных молекул за счет мгновенных диполей, возникающих за счет флуктуации электронной плотности в атомах.

В ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ.

4) Силы отталкивания обусловлены взаимодействием электронных облаков молекул и проявляются при их дальнейшем сближении.

К специфическим межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, то есть, связанные с переносом электронов от одной молекулы к другой. Образующаяся при этом межмолекулярная связь обладает всеми характерными особенностями ковалентной связи: насыщаемостью и направленностью.

Химическая связь, образованная положительно поляризованным водородом, входящим в состав полярной группы или молекулы и электроотрицательным атомом другой или той же молекулы, называется водородной связью. Например, молекулы воды можно представить следующим образом:

Сплошные черточки – ковалентные полярные связи внутри молекул воды между атомами водорода и кислорода, точками обозначены водородные связи. Причина образования водородных связей состоит в том, что атомы водорода практически лишены электронных оболочек: их единственные электроны смещены к атомам кислорода своих молекул. Это позволяет протонам, в отличие от других катионов, приближаться к ядрам атомов кислорода соседних молекул, не испытывая отталкивания со стороны электронных оболочек атомов кислорода.

Водородная связь характеризуется энергией связи от 10 до 40 кДж/моль. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т.е. их ассоциацию в димеры или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар.

Например, фтороводород в газовой фазе существует в виде димера.

В сложных органических молекулах существуют как межмолекулярные водородные связи так и внутримолекулярные водородные связи.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры плавления и кипения, чем их изомеры, способные образовывать межмолекулярные водородные связи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]