Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АППРОКСИМАЦИЯ ФУНКЦИЙ.docx
Скачиваний:
185
Добавлен:
11.05.2015
Размер:
34.22 Кб
Скачать

Явная схема 1-го порядка (метод Эйлера)

Вычисляя интеграл в (23.4) по формуле левых прямоугольников получим: . Погрешность аппроксимации psi(h) и соответственно точность ε(h) имеют первый порядок в силу того, что формула левых прямоугольников на интервале имеет погрешность первого порядка, а схема устойчива.

Неявная схема 1-го порядка

Вычисляя интеграл по формуле правых прямоугольников получим . Эта схема явно не разрешена относительно , поэтому для получениятребуется использовать итерационную процедуру решения уравнения. За начальное приближение можно взять значение из предыдущего узла. Обычно, еслиh выбрано удачно, достаточно сделать 2 – 3 итерации для достижения заданной погрешности . Эффективность неявной схемы заключается в том, что у нее константа устойчивости С0 значительно меньше, чем у явной схемы.

Неявная схема 2-го порядка

Вычисляя интеграл по формуле трапеций. Так как формула трапеций имеет второй порядок точности, то и погрешность метода имеет второй порядок. Схема явно не разрешена относительно, поэтому требуется итерационная процедура. Обычно, если h выбрано удачно, достаточно сделать 2 – 3 итерации для достижения заданной погрешности . Эффективность неявной схемы заключается в том, что у нее константа устойчивости С0 значительно меньше, чем у явной схемы.

Схема Рунге – Кутта 2-го порядка

Вычисляя интеграл по формуле средних прямоугольников. Уравнение разрешено явно, однако в правой части присутствует неизвестное значение в середине отрезка. Для решения этого уравнения используют следующий способ. Вначале по явной схеме рассчитывают предиктор. После этого рассчитывают корректор. В результате схема оказывается явной и имеет второй порядок.

Схема Рунге – Кутта 4-го порядка

Вычисляя интеграл по формуле Симпсона. Ввиду того, что формула Симпсона имеет четвертый порядок, погрешность метода тоже имеет четвертый порядок. Можно по-разному реализовать расчет неявного уравнения, однако наибольшее распространение получил следующий способ. Вычисляют предиктор по формулам, затем корректор.

Многошаговые схемы Адамса

При построении всех предыдущих схем для вычисления интеграла в правой части использовались лишь точки в диапазоне одного шага. Поэтому при реализации таких схем для вычисления следующего значения требуется знать только одно предыдущее значение. Такие схемы называют одношаговыми. Идея методов Адамса заключается в том, чтобы для повышения точности использовать уже вычисленные на предыдущих шагах значения в нескольких предыдущих узлах.

Явная экстраполяционная схема Адамса 2-го порядка

Заменив подынтегральную функцию интерполяционным многочленом Ньютона получим новую формулу. Схема двухшаговая, поэтому для начала расчетов необходимо, сделав один шаг, найти по методу Рунге – Кутта 2-го порядка , после чего вычислять оставшиеся значения.

Явная экстраполяционная схема Адамса 3-го порядка

Заменив подынтегральную функцию интерполяционным многочленом Ньютона получим формулу. Схема трехшаговая, поэтому для начала расчетов необходимо, сделав два шага, найти по методу Рунге – Кутта 4-го порядка ,, после чего вычислить оставшиеся значения.

Неявная схема Адамса 3-го порядка

Заменив подынтегральную функцию интерполяционным многочленом Ньютона получим формулу. Так как схема двухшаговая, то для начала расчетов необходимо, сделав один шаг, найти y(1) по методу Рунге – Кутта 4-го порядка, после чего y2, y3, ... вычисляются. Эта формула явно не разрешена относительно y(k), поэтому для получения y(k) требуется использовать итерационную процедуру решения уравнения. Значение y(k,0) следует рассчитать по формуле.

Краевая (граничная) задача

Рассмотрим граничную задачу для линейного дифференциального уравнения второго порядка с переменными коэффициентами y//+p(x) y/ + q(x) y = f(x) на отрезке [a, b] с граничными условиями общего вида. В тех случаях, когда невозможно получить решение этой задачи аналитическим методом, используются приближенные или численные методы. Суть приближенных методов. Выбирается система линейно-независимых дважды дифференцируемых функций, при этом функция должна удовлетворять граничным условиям, Искомое решение представляется в виде линейной комбинации базисных функций.