Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
42-54.docx
Скачиваний:
8
Добавлен:
11.05.2015
Размер:
45.71 Кб
Скачать

47 Титан – металл серого цвета. Температура плавления 1668град.

Технический титан изготовляют 2х марок ВТ1-00 (99,53%), ВТ1-0 (99,46%). На поверхности легко образуется оксидная пленка, повышающая сопротивление коррозии в некоторых агрессивных средах. Его обрабатывают давлением. Сплавы имеют большее применение, чем титан. Легирование титана Fe,Al, Mn, Cr, V, Si повышает его прочность, но снижает пластичность и вязкость. Жаропрочность повышают Al Mo Zr. Титановые сплавы имеют высокую удельную прочность. Al N O повышают температуру полиморфного превращения и расширяют область α-фазы. Mo V Mn Fe Cr понижают эту температуру и расширяют область β-фазы: β→α+ТхМу. При охлаждении β-фаза претерпевает эфтектоидное превращение. Как правило все промышленные сплавы титана содержат алюминий. Могут иметь нейтральные элементы (Sn Zr).

Титановые сплавы применяются в авиации, ракетной технике, в химическом машиностроении и др. ВТ5 хорошо обрабатывается давлением и сваривается. ВТ6 обладает хорошими механическими и технологическими свойствами и упрочняется термической обработкой. ВТ14 применяют для изготовления тяжелонагруженых деталей. ВТ8 применяют после изотермического отжига. Для фасонного литья применяют сплавы ВТ5Л, ВТ6Л, ВТ14Л, которые обладают достаточно хорошими литейными и механическими свойствами .

48 Магнитными называют сплавы, обладающие магнитными свойствами: магнитной проницаемостью и восприимчивостью, остаточной индукцией и коэрцитивной силой. Магнитная проницаемость характеризует свойство сплава пропускать магнитный поток. Магнитная восприимчивость характеризует способность сплава к намагничиванию. Остаточная индукция характеризует степень остаточной намагниченности сплава после снятия магнитного поля. Коэрцитивная сила представляет собой значение напряженности магнитного поля, необходимого для того, чтобы свести к нулю остаточную намагниченность в магнитных сплавах.

Магнитные стали и сплавы в зависимости от коэрцитивной силы и магнитной проницаемости делят на магнитно-твердые   и магнитно-мягкие.

Магнитно-твердые стали и сплавы применяют для изготовления постоянных магнитов; имеют большую коэрцитивную силу. Это высокоуглеро­дистые и легированные стали, специальные сплавы. Углеродистые стали (У10-У12) после закалки имеют достаточную коэрцитивную силу (Нс = 5175 А/м), но. так как они прокали­ваются на небольшую глубину, их применяют для изготовления небольших магнитов. Хромистые стали по сравнению с углеродистыми прокаливаются значительно глубже, поэтому из них изготовляют более крупные магни­ты. Магнитные свойства этих сталей такие же, как и углеродистых. Хромокобальтовые стали (например, марки ЕХ5К5) имеют более высокую коэрцитивную силу — Нс = 7166 А/м. Магнитные сплавы, например ЮНДК24 (9% Аl, 13,5% Ni, 3% Сu, 24% Со, остальное железо), имеют очень высокую коэрцитивную силу — Нс = 39810 А/м, поэтому из них изготовляют магниты небольшого размера, но большой мощности.

Магнитно-мягкие стали и сплавы имеют малую коэрцитивную силу и большую магнитную проницаемость. К ним относят электротехническое железо и сталь, железоникелевые сплавы (пермаллои). Электротехническое железо (марки Э, ЭА, ЭАА) содержит менее 0,04% С, имеет высокую магнитную проницаемость μ=(2,78-3,58)∙109 ГГн/м и применяется для сердечников, полюсных наконечников электромагнитов и др. Электротехническая сталь содержит менее 0,05% С и кремний, сильно увеличивающий магнитную проницаемость. Электротехническую сталь по содержанию кремния делят на четыре группы: с 1% Si - марки Э11, Э12, Э13; с 2% Si - Э21, Э22; с 3% Si - Э31, Э32; с 4% Si - Э41-Э48. Вторая цифра (1-8) характеризует уровень электротехнических свойств.

49 В качестве заменителей бронзы, латуни и других цветных сплавов в электромашиностроении применяют немагнитную сталь и чугун, имеющие аустенйтную структуру. Такая структура получается за счет высокого содержания марганца и никеля, расширяющих у-область на диаграммах состояния сплавов этих сталей с железом. Например, никелевая немагнитная сталь Н25, содержащая 22 - 25 % Ni, получает аустенйтную структуру после закалки в масле при 920 - 940 С. Она допускает обработку режущим инструментом, хорошо сопротивляется коррозии, но цена ее высока вследствие присутствия 22 - 25 % Ni. Эта сталь наиболее распространена, однако, обрабатываемость ее хуже, чем немагнитной никелевой стали. Аустенитная марганцовистая сталь не поддается обработке резанием, так как ее аустенит под действием режущего инструмента переходит в мартенсит с высокой твердостью, что препятствует ее применению.

Немагнитные стали и сплавы являются заменителями цветных металлов в электромашиностроении. Наибольшее применение имеют сталь марки Н25, содержащая 22 - 25 % №, и марки 55Н9Г9, содержащая 9 % Ni и 8 - 10 % Мп. Немагнитную сталь применяют в приборах, где ферромагнитные материалы могут повлиять на точность показаний.

Немагнитные стали и сплавы являются заменителями цветных металлов в электромашиностроении.

Немагнитные стали применяют при изготовлении установок, рассчитанных на высокие механические нагрузки. Немагнитной является сталь ЭИ269, содержащая 18 5 - 21 5 % Ni, и сталь 55Г9Н9ХЗ, содержащая 7 5 - 9 5 % Ni и 7 5 - 9 5 % Мп. Указанные стали используют для изготовления деталей электрических машин и аппаратов, а также компасных корпусов.

Немагнитные стали и чугуны. Бронзы, латуни, алюминиевые и другие сплавы цветных металлов немагнитны.

Немагнитная сталь применяется в приборах, где ферромагнитные материалы могут повлиять на точность показаний.

Немагнитные стали и сплавы применяют в электромашиностроении. Сталь с особыми тепловыми свойствами применяется в тех приборах, где должно быть весьма незначительное тепловое расширение.

50 Сплавы высокого сопротивления делятся на три группы: 1. Сплавы для магазинов сопротивлений, различных эталонов, добавочных сопротивлений, шунтов. 2. Сплавы для сопротивлений и реостатов. 3. Сплавы для электронагревательных приборов и печей.

К сплавам первой группы предъявляют следующие требования: высокое удельное сопротивление, близкий к нулю температурный коэффициент сопротивления, малая термоэлектродвижущая сила в сочетании с другими металлами (особенно с медью), постоянство сопротивления во времени, высокая стойкость против коррозии. К сплавам этой группы относятся сплавы на основе меди — манганин и константан. Манганин — сплав коричнево-красноватого цвета, состоящий из 86% меди, 12% марганца и 2% никеля. Манганин имеет удельное сопротивление 0,42—0,43 ом-мм2/м, плотность 8,4 кг/дм3, прочность на разрыв 40—55 кГ/мм2, очень малые температурный коэффициент сопротивления и термо-э. д. с, допустимую рабочую температуру не выше 60°. Манганин является лучшим материалом для изготовления магазинов сопротивлений, образцовых сопротивлений и шунтов. Константан — сплав 60% меди и 40% никеля. Константан имеет удельное сопротивление 0,5 ом-мм2/м, плотность 8.9 кг/дм3, прочность на разрыв 40—50 кГ/мм2. Константан применяется для изготовления реостатов и электронагревательных сопротивлений, если их рабочая температура не превышает 400—450°. Константаи в сочетании с медью имеет высокую термо-э. д.с. и поэтому не может быть применен для изготовления эталонных сопротивлений к точным приборам, так как эта дополнительная э. д. с. будет искажать показания приборов. Это свойство кон-стантана используется при изготовлении термопар для измерения температур порядка нескольких сотен градусов. Сплавы для сопротивлений и реостатов должны быть дешевыми, иметь большое удельное сопротивление и малый температурный коэффициент сопротивления. Для этих целей применяют сплавы на медной основе, например константаи, нике-лин и др. Для удешевления материала никель в реостатных сплавах заменен цинком и железом. Сплавы, применяемые для электронагревательных приборов и печей, должны хорошо обрабатываться, быть механически прочными, дешевыми, иметь высокое удельное сопротивление и длительное время работать при высокой температуре без окисления. При нагреве металла на его поверхности образуется оксидная пленка, которая должна предотвратить дальнейшее разрушение металла. Металлы — медь, железо и кобальт — имеют пористую оксидную пленку, поэтому при нагревании они быстро разрушаются. Такие металлы, как никель, хром и алюминий, покрываются при нагреве плотной оксидной пленкой, поэтому жароупорные сплавы делают на основе этих металлов. Нихром — сплав никеля и хрома. К нихромам относится также ферронихром, который, кроме никеля и хрома, содержит железо (58—62% никеля, 15—17% хрома, остальное — железо). Плотность нихрома 8,4 кг/дм3, прочность на разрыв 70 кГ/мм2, удельное сопротивление около 1,0 ом-мм2/м. Нихром выпускается в виде проволоки и ленты, которые идут на изготовление спиралей электронагревательных приборов и печей, имеющих рабочую температуру до 1000°. Фехраль — сплав 12—15% хрома, 3—5% алюминия, остальное — железо. Фехраль имеет плотность 7,5 кг/дм3, прочность на разрыв 70 кГ/мм2 и удельное сопротивление около 1,2 ом-мм2/м. Рабочая температура фехраля около 800°. Хромаль — сплав 28—30% алюминия, остальное — железо. Прочность хромаля на разрыв 80 кГ/мм2, удельное сопротивление 1,3—1,4ом-мм2/м, допустимая рабочая температура 1250°.

СПЛАВЫ С ОСОБЫМИ ТЕПЛОВЫМИ

И УПРУГИМИ СВОЙСТВАМ

Для ряда отраслей машиностроения и приборостроения необходимо применение материалов со строго регламентированными значениями в определенных температурных интервалах эксплуатации таких физических свойств, как температурные коэффициенты линейного расширения ? (ТКЛР) и модуля нормальной упругости ? (ТКМУ). Эти коэффициенты определяют характер изменения размеров детали и модуля упругости сплава при нагреве.

ТКЛР сплава определяют с помощью дилатометра по относительному удлинению образца в заданном температурном диапазоне.

Согласно правилу Курнакова, в том случае, если компоненты образуют твердый раствор, то ТКЛР сплава изменяется по криволинейной зависимости внутри пределов, ограниченных значениями ТКЛР этих чистых компонентов. Коэффициент линейного расширения ? возрастает с повышением температуры (рис. 24.1). Однако сплавы Fe—Ni не подчиняются общим закономерностям. В области концентраций от 30 до 45 % для них характерны аномалии, связанные с инварным эффектом (рис. 24.2). Самое низкое значение ТКЛР в диапазоне температур от –100 до 100 °С имеет сплав, содержащий 36 % Ni. Этот сплав был открыт Гийомом в 1897 году и назван инваром (лат. неизменный) из-за минимальных значений теплового расширения.

Для металлов с кубической кристаллической решеткой ТКЛР изотропен. Его значения не зависят от направлений кристаллической решетки и преимущественной ориентации текстуры. Термический коэффициент объемного расширения втрое превышает ТКЛР

Для сплавов Fe—Ni инварного состава помимо низких значений ТКЛР характерна еще одна аномалия — аномалия термического коэффициента модуля упругости ТКМУ. В любых твердых телах, в том числе металлах, при нагреве наблюдается уменьшение модуля упругости, являющегося мерой сил межатомных связей. В сплавах с инварным эффектом модуль упругости растет или остается постоянным с повышением температуры. Характерно, что максимальной величиной ТКМУ обладает тот же сплав Fe—Ni с самым низким значением ТКЛР, содержащий 36 % Ni (рис. 24.3). Подбор определенного химического состава позволяет разработать сплавы, модуль упругости которых практически не зависит от температуры. Сплавы, сохраняющие постоянство модуля упругости в широком температурном диапазоне, называют элинварами. Природа аномального изменения ТКЛР инварных сплавов, так же как и модуля нормальной упругости, имеет ферромагнитное происхождение.

В ферромагнитных сплавах Fe—Ni инварного типа велик уровень объемной магнитострикции — изменения объема за счет внутреннего магнитного поля. При нагреве происходит уменьшение магнитострикционной составляющей объема. Выше температуры точки Кюри магнитострикционные деформации полностью исчезают в связи с переходом металла в парамагнитное состояние.

Нормальная составляющая ТКЛР при нагреве растет вследствие уменьшения энергии связи атомов. Этот рост компенсируется уменьшением магнитострикции в результате снижения намагниченности, как следствие усиления тепловых колебаний атомов. В итоге при нагреве до температуры точки Кюри объем инварных сплавов мало меняется. ТКЛР для некоторых сплавов может даже приобретать отрицательные значения, и их объем даже уменьшается.

Внешние растягивающие напряжения действуют на Fe—Ni-ферромагнетики инварного состава подобно магнитному полю и также способствуют проявлению объемной магнитострикции, обычно называемую в этом случае механострикцией. Высокий уровень механострикции в элинварных сплавах способствует аномальному изменению модуля упругости при нагреве. Влияние нагрева на модуль упругости элинварных сплавов может быть описано формулой Еt = Е0 (1 +t), где Е0 — модуль упругости обычных сплавов, ? — температурный коэффициент модуля нормальной упругости. В элинварных сплавах этот коэффициент всегда имеет положительное значение.

Снижение модуля упругости при нагреве обычных сплавов компенсируется составляющей за счет механострикции, что в итоге способствует стабилизации модуля упругости в широком температурном диапазоне.

Для обеспечения стабильности температурного коэффициента линейного расширения и модуля упругости для каждого конкретного случая необходимо применение сплавов строго определенного химического состава. Такие сплавы обычно называют прецизионными сплавами (от фр. precision), т. е. отличающимися высокой точностью химического состава.

51 Диэлектрическими называют материалы, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводимость и чем слабее у него выражены замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением, теплоты.

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, т.е. с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.

В зависимости от влияния напряженности электрического поля на значение относительной диэлектрической проницаемости материала все диэлектрики подразделяют на линейные и нелинейные.

Для линейных диэлектриков с малыми потерями энергии зависимость заряда конденсатора от напряжения (переменной полярности) имеет вид прямой; для нелинейных диэлектриков (сегнетоэлектриков) в этих условиях зависимость заряда от напряжения принимает форму петли гистерезиса (см. рис. далее).

Неполярными диэлектриками являются газы, жидкости и твердые вещества в кристаллическом и аморфном состояниях, обладающие в основном только электронной поляризацией. К ним относятся водород, бензол, парафин, сера, полиэтилен и др.

Полярные (дипольные) диэлектрики — это органические жидкие, полужидкие и твердые вещества, имеющие одновременно дипольно-релаксационную и электронную поляризации. К ним относятся нитробензол, кремнийорганические соединения, фенолформальдегидные смолы, эпоксидные компаунды, хлор

52 Пластическими массами называют неметаллические материалы на основе природных или искусственных высокомолекулярных органических смол, называемых полимерами, с добавлением наполнителей, пластификаторов, смазок и красителей, необходимых для придания им определенных свойств и требуемого внешнего вида.

По физико-механическим свойствам при 20° С пластмассы разделяются на жесткие, полужесткие и мягкие.

В зависимости от наполнителей пластмассы подразделяются на композиционные и слоистые. Некоторые пластмассы используются без наполнителей (чистые смолы).

Наполнителями называются вещества (древесная мука, маршалит, сурик, железный порошок и др.), которые хорошо перемешиваются со смолой, но являются химически инертными к ней. Наполнитель влияет на водостойкость, химическую стойкость, диэлектрические свойства, теплостойкость и твердость пластмасс.

Пластические массы обладают малой плотностью, высокой прочностью, хорошими изоляционными свойствами, большой химической стойкостью и значительной сопротивляемостью истиранию. Благодаря разнообразию физико-механических свойств отдельные виды пластических масс нашли широкое применение в авиационной, электротехнической промышленности, промышленности средств связи, автомобилестроении, приборостроении, в химическом и текстильном машиностроении, в производстве медицинского инструмента и аппаратуры. Некоторые виды пластмасс используют в литейной промышленности для исправления пороков отливок (пористости, раковин), в качестве связующих материалов, клеев, для изготовления моделей (рис. 5).

В состав пластических масс часто вводят добавки разного назначения: противостарители, красители, пластификаторы.

53 К термопластичным пластмассам на основе полимеризационных смол относятся: полиэтилен, поливинилхлорид, политетрафторэтилен, полистирол, полиакриловые смо­лы (акрилаты), полиамидные смолы и др. Обычно они выпускаются как простые пластмассы (без наполни­теля).

Полиэтилен — бесцветный роговидный продукт, жир­ный на ощупь, морозостоек (—60 —65°С), горюч, хорошо сохраняет форму даже при температуре +60°C, ме­ханически прочен, обладает высокими диэлектрическими свойствами, является самой легкой и наиболее водостойкой пластмассой. Применяется полиэтилен для изоля­ции различных кабелей и проводов.

Поливинилхлорид имеет высокую прочность, хими­чески стоек и обладает диэлектрическими свойствами. Поливинилхлорид выпускается как пластифицирован­ный (пластикаты), так и не пластифицированный (винипласты) в виде листов, труб, плиток, стержней и прут­ков.

Винипласт как электроизоляционный материал нахо­дит применение для гальванических ванн и изготовле­ния баков кислотных и щелочных аккумуляторов.

Полистирол — бесцветная смола с хорошими анти­коррозионными свойствами, является типичным высоко­частотным диэлектриком. Полистирол применяется для изоляции кабелей, как прессматериал для изготовления различных электроизоляционных деталей.

Политетрафторэтилен или фторопласт является наи­более морозостойким пластиком, физико-механические свойства которого почти не изменяются при температу­ре до —195°С. Применяется он как диэлектрик и анти­фрикционный материал. Выпускают два вида фторо­пластов: фторопласт-3 и фторопласт-4.

Полиакриловые смолы. К этой группе относятся по­лимеры акриловой, — метакриловой кислот, сложных эфиров. Ценным техническим свойством полиакрилатов является их прозрачность и бесцветность, а также спо­собность пропускать ультрафиолетовые лучи. Полиакри­ловые материалы выпускаются в виде листов органиче­ского стекла (авиационное, светотехническое, товарное, поделочное).

Полиамидные смолы выпускаются шести типов: кап­рон, анид, смолы № 54, № 68, АК-7 и П-6. Наибольшее применение из них в машиностроении находит капрон, который начинает вытеснять цветные сплавы, чугун и сталь.

Капрон (поликапролактам) представляет собой твердую высокоплавкую смолу белого или светло-жел­того цвета, без запаха, с малым удельным весом (1,13— 1,15), температурой плавления 212—215°С. Капрон от­личается исключительной стойкостью к щелочам, устой­чив к бензину, спирту, бензолу, гигроскопичен, но   в то же время вода для него является пластификатором и придает ему эластичность. Капрон применяется для изготовления искусственного волокна и технических изде­лий (подшипников скольжения, шайб, втулок, зубчатых колес, пленок, лент). Диэлектрические свойства капрона находятся в зависимости от влагосодержания, поэтому в электротехнике рекомендуется применять капрон, когда требуется высокая стойкость к маслам, высоким темпе­ратурам и ударным нагрузкам. К пластическим массам на основе природных смол относятся изделия, изготовленные на основе эфиров цел­люлозы. Наиболее распространенным видом таких пла­стиков является целлулоид, широко используемый для производства изделий народного потребления.

На основе асфальтов, битумов и пеков вырабатыва­ются пластмассы черного цвета, применяемые для изго­товления аккумуляторных баков, электро- и термоизоля­ционных изделий.