Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билет 13.docx
Скачиваний:
22
Добавлен:
19.05.2015
Размер:
83.97 Кб
Скачать

3. Тормозные режимы ад.

Асинхронный движок может работать в последующих тормозных режимах: в режиме рекуперативного торможения, противовключения и динамическом.

Рекуперативное торможение асинхронного мотора

Режим рекуперативного торможения осуществляется в этом случае, когда скорость ротора асинхронного мотора превосходит синхронную.

Режим рекуперативного торможения фактически применяется для движков с переключением полюсов и в приводах грузоподъемных машин (подъемники, экскаваторы и т.п.).

При переходе в генераторный режим вследствие конфигурации знака момента меняет символ активная составляющая тока ротора. В данном случае асинхронный движок дает активную мощность (энергию) в сеть и потребляет из сети реактивную мощность (энергию), нужную для возбуждения. Таковой режим появляется, к примеру, при торможении (переходе) двухскоростного мотора с высочайшей на низкую скорость, как показано на рис. 1 а.

Рис. 1. Торможение асинхронного мотора в основной схеме включения: а) с рекуперацией энергии в сеть; б) противовключением

Представим, что в начальном положении движок работал на характеристике 1 и в точке а, вращаясь со скоростью ωуст1. При увеличении числа пар полюсов движок перебегает на характеристику 2, участок бс которой соответствует торможению с рекуперацией энергии в сеть.

Тот же вид торможения может быть реализован в системе преобразователь частоты – движок при останове асинхронного мотора либо при переходе с свойства на характеристику. Для этого осуществляется уменьшение частоты выходного напряжения, а тем синхронной скорости ωо = 2πf / p.

В силу механической инерции текущая скорость мотора ω будет изменяться медлительнее чем синхронная скорость ωо, и будет повсевременно превосходить скорость магнитного поля. Из-за этого и появляется режим торможения с отдачей энергии в сеть.

Рекуперативное торможение также может быть реализовано в электроприводе грузоподъемных машин при спуске грузов. Для этого движок врубается в направлении спуска груза (черта 2 рис. 1 б).

После окончания торможения он будет работать в точке со скоростью –ωуст2. При всем этом осуществляется процесс спуска груза с отдачей энергии в сеть.

Рекуперативное торможение является более экономным видом торможения.

Торможение асинхронного электродвигателя противовключением

Перевод асинхронного мотора в режим торможения противовключением может быть выполнен 2-мя способами. Какой-то из них связан с конфигурацией чередования 2-ух фаз питающего электродвигатель напряжения.

Допустим, что движок работает на характеристике 1 (рис. 1 б) при чередовании фаз напряжения АВС. Тогда при переключении 2-ух фаз (к примеру, В и С) он перебегает на характеристику 2, участок аб которой соответствует торможению противовключением.

Обратим внимание на то событие, что при противовключении скольжение асинхронного мотора меняется от S = 2 до S = 1.

Ротор при всем этом крутится против направления движения поля и повсевременно замедляется. Когда скорость спадает до нуля, движок должен быть отключен от сети, по другому он может перейти в двигательный режим, при этом ротор его будет крутиться в направлении, оборотном предшествующему.

При торможении противовключением токи в обмотке мотора могут в 7–8 раз превосходить надлежащие номинальные токи. Приметно миниатюризируется коэффициент мощности мотора. О КПД в этом случае гласить не приходится, т.к. и преобразуемая в электронную механическая энергия и энергия, потребляемая из сети, рассеиваются в активном сопротивлении ротора, и полезно применяемой энергии в этом случае нет.

Короткозамкнутые движки краткосрочно перегружаются по току. Правда, у их при (S > 1) вследствие явления вытеснения тока приметно растет активное сопротивление ротора. Это приводит к уменьшению и повышению момента.

С целью роста эффективности торможения движков с фазным ротором в цепи их роторов вводят дополнительные сопротивления, что позволяет ограничить токи в обмотках и прирастить момент.

Другой путь торможения противовключением может быть применен при активном нраве момента нагрузки, который создается, к примеру, на валу мотора грузоподъемного механизма.

Допустим, что требуется выполнить спуск груза, обеспечивая его торможение при помощи асинхронного мотора. Для этого движок методом включения в цепь ротора дополнительного резистора (сопротивления) переводится на искусственную характеристику (ровная 3 на рис. 1).

Вследствие превышения моментом нагрузки Мс пускового момента Мп мотора и его активного нрава груз может опускаться с установившейся скоростью –ωуст2. В этом режиме торможение скольжения асинхронного мотора может изменяться от S = 1 до S = 2.

Динамическое торможение асинхронного мотора

Для динамического торможения обмотки статора движок отключают от сети переменного тока и подключают к источнику неизменного тока, как это показано на рис. 2. Обмотка ротора при всем этом может быть закорочена, либо в ее цепь врубаются дополнительные резисторы с сопротивлением R2д.

Рис. 2. Схема динамического торможения асинхронного мотора (а) и схема включения обмоток статора (б)

Неизменный ток Iп, значение которого может регулироваться резистором 2, протекает по обмоткам статора и делает относительно статора недвижное магнитное поле. При вращении ротора в нем наводится ЭДС, частота которой пропорциональна скорости. Эта ЭДС, в свою очередь, вызывает возникновение тока в замкнутом контуре обмотки ротора, который делает магнитный поток, также недвижный относительно статора.

Взаимодействие тока ротора с результирующим магнитным полем асинхронного мотора делает тормозной момент, за счет которого достигается эффект торможения. Движок в данном случае работает в режиме генератора независимо от сети переменного тока, преобразовывая кинетическую энергию передвигающихся частей электропривода и рабочей машины в электронную, которая рассеивается в виде тепла в цепи ротора.

На рисунке 2 б показана более всераспространенная схема включения обмоток статора при динамическом торможении. Система возбуждения мотора в этом режиме является несимметричной.

Для проведения анализа работы асинхронного мотора в режиме динамического торможения несимметричную систему возбуждения подменяют симметричной. С этой целью принимается допущение, что статор питается не неизменным током Iп, а неким эквивалентным трехфазным переменным током, создающим такую же МДС (магнитодвижущую силу), что и неизменный ток.

Электромеханическая и механические свойства представлены на рис. 3.

Рис. 3. Электромеханическая и механические свойства асинхронного мотора

Черта размещена на рисунке в первом квадранте I, где s = ω / ωo – скольжение асинхронного мотора в режиме динамического торможения. Механические свойства мотора размещены во 2-м квадранте II.

Разные искусственные свойства асинхронного мотора в режиме динамического торможения можно получить, изменяя сопротивление R2д дополнительных резисторов 3 (рис. 2) в цепи ротора либо неизменный ток Iп, подаваемый в обмотки статора.

Варьируя значения R2д и Iп, можно получить хотимый вид механических черт асинхронного мотора в режиме динамического торможения и, тем, подобающую интенсивность торможения асинхронного электропривода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]