Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДИПЛОМ.docx
Скачиваний:
915
Добавлен:
20.05.2015
Размер:
3.05 Mб
Скачать

2.3. Метод свертывания критериев

Метод свертывания критериев предполагает преобразование набора имеющихся частных критериев в один суперкритерий.

(2.8)

Т.е. мы получаем новый суперкритерий F, который является функцийот частных критериев. В общем случае, функциюназывают сверткой частных критериев [46,48,51].

К основным этапом свертывания относятся:

1. Обоснование допустимости свертки

При обосновании допустимости свертки, мы в первую очередь должны подтвердить, что критерии, которые мы сворачиваем, должны быть однородными. Выделяют такие группы показателей эффективности;

- показатели результативности;

- показатели ресурсоемкости;

- показатели оперативности.

Критерии, которые мы сворачиваем, должны относиться к одной и той же группе, нельзя сворачивать критерии, которые относятся, например, один из них к показателям оперативности, а другой к показателям результативности. Т.е. для каждой группы свертывание частных критериев следует выполнять отдельно. При нарушении этого принципа теряется смысл критерия [30,33,51].

2. Нормировка критериев

Правила нормализации критериев, мы рассматривали ранее в предыдущем разделе.

3. Учет приоритетов критериев

Учет приоритетов обычно задается некоторым векторам весовых коэффициентов, которые отображают важность того или иного критерия для решаемой задачи.

4. Построение функции свертки

Для свертывания критериев, используют такие основные типы функций:

- Аддитивные функции свертки;

- Мультипликативные;

- Агрегированные, а также могут быть другие варианты сверток.

Аддитивная свертка

Аддитивную свертку критериев можно рассматривать как реализацию принципа справедливой компенсации абсолютных значений нормированных частных критериев [25,30,51]. В этом случае, суперкритерий обычно строятся как взвешенная сумма частных критериев

(2.9)

Весовые коэффициенты выбираются такими, чтобы их сумма была равна единицы. В методе равномерной оптимизации, который является частным случаем аддитивной свертке, весовые коэффициенты берутся равными друг другу. Иногда оказывается более удобным другой подход к определению весовых коэффициентов, их определяет соответствие с такой таблицей:

таблица 2.1.

Таблица относительной важности критериев

Относительная важность

1

Равная важность сравниваемых требований

3

Умеренное (слабое) превосходство одного над другим

5

Сильное (существенное) превосходство

7

Очевидное превосходство

8

Абсолютное (подавляющее) превосходство

2, 4, 6, 8

Промежуточные решения между двумя соседними оценками

Мультипликативная свертка

Мультипликативная свертка базируется на принципе справедливой компенсации относительных изменений частных критериев. При этом, суперкритерий имеет вид: , произведение частных критериев, каждый из которых возведен в степень. При этом сумма весовых коэффициентовдолжна быть равна единицы, а каждый из весовых коэффициентов должен быть не отрицательной величиной.

При использовании мультипликативных критериев не требуется нормировка частных критериев, и это является их преимуществом [30,33,45,46,48].

Выбор между аддитивными и мультипликативными критериями определяется важностью учета абсолютных или относительных изменений значений частных критериев.

Агрегирование частных критериев используют также различные варианты агрегирование. В частности, если компенсация значений одних показателей эффективности другими недопустима, то используют функции агрегирования вида:

(2.10)

Для каждого частного критерия, находится его нормированное значение и умножается на весовой коэффициент. А потом из всех полученных величин выбирается либо максимальное, либо минимальное значение.

Если первые mпоказателей надо увеличить, а остальные – уменьшить, то используют функцию агрегирования вида:

(2.11)

В числители находятся произведение тех критериев, значение которых нам надо максимизировать, а в знаменателе находятся произведение тех критериев, значение которых нам надо минимизировать. И поэтому мы получаем новый критерий, который нам надо будет максимизировать [1,6,9,48,51].

Методы свертывания критериев широко используются в решение задач многокритериальной оптимизации. Однако они имеют также проблемы и недостатки. В частности трудно обосновать выбор метода свертывания критериев, а от выбора метода часто зависит получаемый результат. Другим недостатком является трудность обоснование выбора весовых коэффициентов, часто для этого привлекается эксперты, проводятся опросы, потом обрабатываются полученные результаты, однако это требует много времени и затраты других ресурсов. Еще одна проблема связана с тем, что эти методы, как правила дает возможность компенсировать малые значения одних критериев большими значениями других, что часто бывает неприемлемо для конкретных решений [8,16,21,25].

Рассмотрим в качестве примера такую задачу:

Перед тем как преобразовывать эти критерии в 1, мы должны привести их в однородном состоянии. Т.е. в данном случае нужно максимизировать f2→ f2' = -f2. И тогда получим: . После этого суммируем частных критериевв один, и можем дальше решить задачу обычным путем.

Также нужно учитывать и весовые коэффициенты, при этом их сумма должна быть = 1, и каждый из весовых коэффициентов должен быть неотрицательной величиной. Весовые коэффициенты распределяется по важности этих самих частных критериев . В данном случае, весовые коэффициенты будут распределяться следующим образом: 0,5; 0,2; 0,3.

После подсчета вместе с весовыми коэффициентами, мы получим целевую функцию такого вида: или.

Открываем электронную книгу Excel и, как и для решения однокритериальной задачи определяем ячейки под переменные . Для этого в ячейку А3 вводим подпись «Переменные», а соседние три ячейки В2, С2 и D2 вводим значения переменных. Это могут быть произвольные числа, например единицы или нули, далее они будут оптимизироваться. В нашем случае это единицы.

рис.2.11. Определение переменных, целевых и ограничений

В четвертой строке задаем целевую функцию. В А4 вводим подпись «Целевая», а в В4, С4, D4 наши значения.

Дальше, в ячейку F4 вводим формулу «=B4*B3+C4*C3+D4*D3», таким образом, задаем целевую функцию.

В ячейку F6,F7и F8 вводим формулы «=B6*$B$3+C6*$C$3+D6*$D$3», «=B7*$B$3+C7*$C$3+D7*$D$3»,«=B8*$B$3+C8*$C$3+D8*$D$3» соответственно.

После открытия окна «Поиск решения» в поле «Оптимизировать целевую функцию» ставим курсор и делаем ссылку на ячейку «F4». В окне появится $F$4. В связи с тем, что целевая функция максимизируется, далее нужно проверить, что флажок ниже поля стоит напротив надписи «Максимум».

После ставим курсор в поле «Изменяя ячейки переменных» и обводим ячейки с переменными В3, С3 и D3, выделяя ячейки с переменными. В поле появиться $B$3:$D$3.

В нижней части окна находится поле «Ограничения». Добавляем все необходимые ограничения, «F6» «» «F6», «F7:F8» «≤» и «G7:G8».

Вводим дополнительное ограничение, и получим следующую формулу «B3:D3», «», «0».

рис.2.12. Параметры поиска решения

Далее выбираем метод решения «Поиск решения линейных задач симплекс-методом». Для запуска вычислений нажимаем кнопку «Найти решение». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и «ОК» видим результат.

рис.2.13. Окончательный результат решения по методу свертывания критериев

Существующие методы предназначены в основном для сравнения заданных альтернатив и выбора лучшей из них. Довольно часто критерии, по которым оцениваются альтернативы, противоречивы, для них используются разные методы и шкалы оценок.

С математической точки зрения не существует идеального способа или метода решения многокритериальных задач оптимизации. Тем не менее, эти методы помогают подготовить всю необходимую для принятия решения информацию таким образом, чтобы помочь лицам принимающее решение максимально точно разобраться в ситуации и принять наиболее обоснованное решение.