Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИДЗ Проверка стат гипотез.doc
Скачиваний:
16
Добавлен:
29.05.2015
Размер:
1.48 Mб
Скачать

Вариант 11.

  1. Имеется выборка из нормальной совокупности с неизвестным параметром и известным параметром . Построить наиболее мощный критерий уровня для проверки гипотезы , против альтернативы: . Используя построенный критерий, по выборочным данным нормальной случайной величины (таблица 1), на уровне значимости проверить гипотезу , если . Указать мощность критерия, если .

  2. Имеется выборка из нормальной совокупности с известным параметром и неизвестным параметром . Построить минимаксный критерий для проверки гипотезы , против альтернативы: . Используя построенный критерий, по выборочным данным нормальной случайной величины (таблица 1), принять одну из двух гипотез: , , если . Указать уровень значимости и мощность критерия.

  3. Даны две выборки объемов и из генеральных совокупностей, имеющих нормальное распределение с математическими ожиданиями и соответственно и одинаковой дисперсией (все параметры неизвестны). Построить асимптотический критерий отношения правдоподобия уровня для проверки гипотезы против альтернативы .

  4. По критерию Пирсона при уровне значимости проверить гипотезу о распределении случайной величины по закону с плотностью , где параметр - неизвестен, если задано попаданий выборочных значений случайной величины в подинтервал . Указать достигнутый уровень значимости.

Интервал

(0; 0,02)

(0,01; 0,05)

(0,05; 0,2)

(0,2; 0,4)

(0,4; 0,7)

(0,7; 1)

Частота

14

9

9

7

4

7

  1. Используя критерий Жарке-Бера, при уровне значимости , на основе выборочных данных случайной величины (таблица 1), проверить гипотезу о распределении по нормальному закону. Указать достигнутый уровень значимости.

  2. По двум независимым выборкам объемов и нормально распределенных величин и найдены выборочные значения , . Дисперсии величин и известны: , . При уровне значимости проверить гипотезу , при конкурирующей .

Вариант 12.

  1. Имеется выборка из нормальной совокупности с неизвестными параметрами и . Построить наиболее мощный критерий уровня для проверки гипотезы , против альтернативы: . Используя построенный критерий, по выборочным данным нормальной случайной величины (таблица 1), на уровне значимости проверить гипотезу . Указать мощность критерия, если .

  2. Имеется выборка из нормальной совокупности с известным параметром и неизвестным параметром . Построить минимаксный критерий для проверки гипотезы , против альтернативы: . Используя построенный критерий, по выборочным данным нормальной случайной величины (таблица 1), принять одну из двух гипотез: , , если . Указать уровень значимости и мощность критерия.

  3. Даны две выборки объемов и из генеральных совокупностей, имеющих нормальное распределение с математическими ожиданиями и и дисперсиями и соответственно (все параметры неизвестны). Построить асимптотический критерий отношения правдоподобия уровня для проверки гипотезы против альтернативы .

  4. По критерию Пирсона при уровне значимости проверить гипотезу о распределении случайной величины по закону с плотностью , , где параметр - неизвестен, если задано попаданий выборочных значений случайной величины в подинтервал . Указать достигнутый уровень значимости.

Интервал

(0; 1)

(1; 2)

(2; 3)

(3; 4)

(4; 5)

(5; 6)

(6; 10)

Частота

20

18

23

14

13

5

7

  1. Используя критерий Жарке-Бера, при уровне значимости , на основе выборочных данных случайной величины (таблица 1), проверить гипотезу о распределении по нормальному закону. Указать достигнутый уровень значимости.

  2. По двум независимым выборкам объемов и нормально распределенных величин и найдены выборочные средние , и исправленные выборочные дисперсии , . При уровне значимости проверить гипотезу , при конкурирующей .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]