Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы физиологии экзамен.doc
Скачиваний:
12
Добавлен:
30.05.2015
Размер:
194.05 Кб
Скачать

29. Внешние проявления сердечной деятельности

Верхушечный толчок. Сердце во время систолы желудочков совершает вращательное движение, поворачиваясь слева направо. Верхушка сердца под­нимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным, поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (паль­пировать) и тем самым определить его границы и силу.

Сердечные тоны - это звуковые явления, возникаю­щие в работающем сердце. Различают два тона: I—сис­толический и II —диастолический.

Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны закрываются, и колебания их створок и прикрепленных к ним сухожильных нитей обу­словливают I тон. Кроме того, в происхождении I тона принимают участие звуко­вые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям I тон про­тяжный и низкий.

Диастолический тон возникает в начале диа­столы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Коле­бание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий.

Также о работе сердца можно судить по электрическим явлениям, возникающим в нем. Их называют биопотенциалами сердца и получают с помощью элек­трокардиографа. Они носят название электрокардио­граммы.

36. Роль поджелудочной железы в пищеварении

У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока.

В состав поджелудочного сока входят органические (протеолитические, амилолитические, липолитические ферменты) и неорганические вещества. К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид (эластаза) и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада (высокомолекулярные полипептиды) расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания (аутолиз).

К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар (мальто зу) в глюкозу, лактаза, расщепляющая молочный сахар (лактозу) до моносахаридов.

В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров.

Регуляция секреции поджелудочной железы

  1. Сложнорефлекторная

  2. Желудочная

  3. Кишечная

40 Роль кишечного сока в пищеварении

У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции.

Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы (амилаза, мальтаза, сахараза, лактаза), расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин.

Регуляция деятельности желез кишечника.

За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами.

Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника.

Стимулирует секрецию кишечных желез гормон энтерокринин - стимулирует отделение главным образом жидкой части сока.

41. Всасывание питательных веществ

Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма. Благодаря всасыванию в желудочно-кишечном тракте организм получает всё необходимое для жизнедеятельности. Всасывание происходит на всем протяжении пищеварительного канала, но основным местом является тонкий кишечник.

В ротовой полости всасываются некоторые лекарственные вещества. В желудке всасываются вода, минеральные соли, моносахара, алкоголь, лекарственные вещества, гормоны, альбумозы, пептоны. В двенадцатиперстной кишке также осуществляется всасывание воды, минеральных веществ, гормонов и продуктов расщепления белка.

Основной процесс всасывания происходит в тонком кишечнике. Углеводы всасываются в кровь в виде глюкозы и отчасти в виде других моносахаров (галактоза, фруктоза). Белки всасываются в кровь в виде аминокислот и простых пептидов. Нейтральные жиры расщепляются ферментами до глицерина и жирных кислот. Жиры поступают главным образом в лимфу и только небольшая часть (30%) — в кровь. Вода, минеральные соли, витамины всасываются в кровь на всем протяжении тонкого кишечника. В толстом кишечнике также происходит всасывание воды и минеральных солей.

Структурные и функциональные особенности тонкого кишечника, обеспечивающие его всасывательную активность. В слизистой оболочке тонкого кишечника обнаруживаются многочисленные круговые складки (складки Керкринга), огромное количество ворсинок и микроворсинок.

В центре каждой ворсинки имеется лимфатический сосуд (млечное пространство или синус ворсинки).

При отсутствии пищи в кишечнике ворсинки малоподвижны. Во время пищеварения ворсинки ритмически сокращаются, что облегчает всасывание питательных веществ.

Механизм всасывания. В обеспечении всасывания большую роль играют физические процессы — диффузия, фильтрация, осмос.

Эпителий кишечника обладает односторонней всасывательной способностью. Всасывание различных веществ осуществляется только из кишечника в кровь или лимфу независимо от их концентрации по обе стороны мембраны.

41. Обмен белков, его регуляция

Регулируется белковый обмен центральной нервной системой и гуморальными веществами.

В гипоталамической области промежуточного мозга находятся специальные центры, регулирующие белковый обмен. На белковый обмен оказывает влияние и кора больших полушарий. Из желез внутренней секреции в регуляции участвуют щитовидная железа, надпочечники, гипофиз.

При гиперфункции щитовидной железы повышается обмен белков, мышцы теряют азотистое вещество — креатин, который переходит в мочу. При этом может наступить отрицательный азотистый баланс.

Гипофункция сопровождается явлениями обратного порядка, замедляется обмен веществ, останавливается рост и развитие организма.

Под влиянием гормонов корковой части надпочечников (дезоксикортикостероиды, альдостерон) в печени и почках усиливается дезаминирование, при этом большое количество азота выделяется с мочой.

Глюкокортикоиды — ускоряют распад белков и аминокислот, в результате чего усиливается выделение азота из организма. Недостаток этих гормонов вызывает обратный процесс. Гормон роста стимулирует синтез белков в мышцах и печени. Он следит за экономным расходованием белков за счет распада жира.

Большая роль в регуляции белкового обмена принадлежит печени и почкам.

В печени происходит не только синтез белка, но и обеззараживание продуктов их гниения. В почках совершается дезаминирование продуктов азотистого обмена.

43. Обмен углеводов, его регуляция

Углеводы в организме имеют значение энергетического материала. Их роль в энергетике организма обусловлена быстротой распада углеводов и окисления, и тем, что они быстро извлекаются из депо и могут быть использованы, когда организм нуждается в дополнительной энергии. Различают простые и сложные углеводы.

Сложные — это полисахариды, состоящие из большого количества молекул простых углеводов.

Кроме энергетической функции, которая является основной, углеводы выполняют другие многообразные функции, такие как:

― соединяясь с белками и липидами образуют структурные компоненты клеток и их оболочек;

― рибоза и дезоксирибоза играют важную роль в качестве составных частей ДНК и РНК и др.

В регуляции постоянства концентрации сахара в крови главную роль выполняет печень. При избыточном поступлении углеводов в организм в печени происходит накопление гликогена, а при недостаточном поступлении, наоборот, гликоген, в ней распадается до глюкозы. Таким образом поддерживается нормальное количество сахара.

Постоянство содержания глюкозы в крови, гликогена в печени регулируется нервной системой. На обмен углеводов оказывает влияние кора больших полушарий головного мозга. Доказательством этого является повышение сахара в моче у студентов после трудного экзамена. Центр углеводного обмена находится в гипотоламусе и продолговатом мозге.

Влияние гипоталамуса и коры больших полушарий на углеводный обмен осуществляется преимущественно посредством симпатической нервной системы, которая вызывает усиленную секрецию адреналина надпочечниками.

Большое значение в углеводном обмене имеют железы внутренней секреции — поджелудочная, щитовидная, надпочечники, гипофиз и др., которые под действием ЦНС регулируют ассимиляцию и диссимиляцию углеводов.

44. Обмен жиров, его регуляция

Физиологическая роль липидов в организме заключается в том, что они входят в состав клеточных структур (пластическое значение липидов) и они используются как богатые источники энергии (энергетическое значение липидов).

Липиды составляют в среднем 10–20 % массы тела животных. В основном это триглицериды, содержащие преимущественно насыщенные и ненасыщенные жирные кислоты. У свиней при сальном откорме, у валухов или волов содержание липидов возрастает до 35–50 %, а у курдючных овец масса жира иногда превышает 50 % живой массы.

Жиры играют важную роль в регуляции теплового баланса. Плохо проводя тепло, жировой слой ограничивает теплоотдачу. Эластичная жировая ткань в качестве своеобразной подкладки для ряда внутренних органов (почки, сердце) способствует фиксации их в полости тела и служит для защиты от механических воздействий.

К жироподобным веществам относятся фосфатиды, стерины, воски и др. вещества. Основным их представителем является ацетилхолин, которого много в нервных тканях. Синтез фосфатидов происходит из нейтральных жиров, фосфорной кислоты и азотистого основания — холина.

Обмен липидов, так же как и других веществ, регулируется центральной нервной системой. Центр липидного обмена находится в промежуточном мозге. Регуляция осуществляется как через симпатическую и парасимпатическую систему, так и через железы внутренней секреции. Симпатическая нервная система способствует мобилизации жира. При ее возбуждении возможна убыль жира из жировой ткани и наоборот, слабая возбудимость симпатической нервной системы способствует понижению расщепления жира и приводит к ожирению.

К железам внутренней секреции, через которые нервная система влияет на обмен, относят гипофиз, щитовидную, поджелудочную, половые железы и др

45. Значение макро-и микроэлементов для организма. Регуляция минерального обмена.

МАКРОЭЛЕМЕНТЫ

химические элементы или их соединения, используемые организмами в сравнительно больших количествах: кислород, водород, углерод, азот, железо, фосфор, калий, кальций, сера, магний, натрий, хлор и др. Макроэлементы участвуют в построении органических соединений и неорганических веществ живых организмов, составляя основную массу сухого вещества последних. Большей частью макроэлементы поступают в клетку извне или представлены в ней ионами как результат диссоциации соответствующих солей.