Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
143_1_1.docx
Скачиваний:
21
Добавлен:
09.02.2016
Размер:
101.37 Кб
Скачать

!15Способы выражения растворов

Массовая доля – отношение массы растворенного вещества к массе раствора

ω(в-ва) = m(в-ва)/m(р-ра)

Объемная доля – отношение объема газа к объему всей смеси газов

φ(газа) = V(газа)/V(смеси)

Мольная доля – отношение количества вещества в сумме количеств вещества и растворителя

χ(в-ва) = n(в-ва)/(n(в-ва)+n(р-ра))

Моляльная концентрация, или моляльность 

отношение количества вещества к массе растворителя

B(в-ва) = n(в-ва)/m(р-ля) (моль/кг)

Массовая концентрация – отношение массы вещества к объему раствора

Р(в-ва) = m(в-ва)/V(р-ра) (г/л)

Титр – масса растворенного в-ва в 1 мл раствора

Т(в-ва) = m(в-ва)/V(р-ра) (г/мл)

Молярная концентрация – отношение количества растворенного вещества к объему раствора

С(в-ва) = n(в-ва)/V(р-ра) (моль/л)

16!Роль растворов в жизнедеятельности организма

Процесс растворения обусловлен взаимодействием частиц рас­творяемого вещества и растворителя. Растворение твердых веществ в воде и диссоциацию молекул на ионы можно представить сле­дующим образом: диполи воды, попадая в электрическое поле полярных молекул, ориентируются вокруг полярных групп или вокруг ионов, находящихся на периферии кристаллических реше­ток вещества. Притягивая к себе молекулу или ион, диполи воды ослабляют, а затем и разрывают межмолекулярные или ионные связи. В частности, вода уменьшает прочность ионной связи между ионами Nа+ и Сl или ионами Nа+ и Вг - При растворении часто проис­ходит не только разрыв связей в растворяемом веществе, но и раз­рушение ассоциаций молекул рас­творителя. В образующемся рас­творе возникают новые ассоциации, как из молекул растворителя, так и растворенного вещества (особенно при больших его кон­центрациях), а также ассоциации из обоих видов молекул.

Термодинамика процессов растворения

Растворение – это физико-химический процесс. При растворении идут как физические процессы (диффузия), так и химические (сольватация). Если растворителем является вода, то процесс называется гидратацией.

Согласно 2-му закону термодинамики при р=const и Т=const вещества самопроизвольно будут растворяться, если энергия Гиббса системы будет при этом понижаться, т.е.

 G = (H – TS) < 0.

Величина H называется энтальпийным фактором растворения.

Величина TS называется энтропийным фактором растворения.

При растворении твердых и жидких веществ энтропия системы обычно возрастает

(S >0); при растворении газов энтропия системы обычно уменьшается (S <0).

Энтальпия при растворении может как увеличиваться (NaCl), так и уменьшаться (KOH).

Таким образом, образование растворов (в отличие от механических смесей) сопровождается изменением энтальпии, энтропии и объёма системы.

Влия-ние температуры и давления на растворимость веществ:

 Растворимость жидкостей и твердых веществ обычно увеличивается при повышении температуры, поскольку при этом возрастает энергия движения (кинетическая энергия) молекул и уменьшается их взаимное притяжение. Изменение давления мало влияет на растворимость, так как объем при растворении меняется незначительно. Гораздо больше давление влияет на растворимость газов. Газ лучше растворяется при увеличении давления, под действием которого часть его молекул переходит в раствор.

При повышении температуры растворимость газов снижается – кинетическая энергия молекул возрастает, они быстрее движутся и легче «вырываются» из растворителя.

17. Растворение газов в жидкостях почти всегда сопро–вождается выделением теплоты. Поэтому раствори–мость газов с повышением температуры согласно принципу Ле Шателье понижается. Эту закономер–ность часто используют для удаления растворенных га–зов из воды (например С02 ) кипячением. Иногда рас–творение газа сопровождается поглощением теплоты (например, растворение благородных газов в некото–рых органических растворителях). В этом случае повы–шение температуры увеличивает растворимость газа.

Газ не растворяется в жидкости беспредельно. При не–которой концентрации газа X устанавливается равно–весие:

Закон Генри (1803г.): количество газа, растворенного при данной тем–пературе в определенном объеме жидкости, при равновесии прямо пропорционально давлению газа.

Закон Генри может быть записан в следующей форме:

с (Х) = Kr(X) × P(X)

где – концентрация газа в насыщенном раство–ре, моль/л;

P(X) – давление газа X над раствором, Па;

Kr(X) – постоянная Генри для газа X, моль×л-1 × Па-1 .

Константа Генри зависит от природы газа, рас–творителя и температуры.

Закон Генри справедлив лишь для сравнительно раз–бавленных растворов, при невысоких давлениях и отсут–ствии химического взаимодействия между молекулами растворяемого газа и растворителем.

Если речь идет о растворении не одного газооб–разного вещества, а смеси газов, то растворимость каж–дого компонента подчиняется закону Дальтона: раство–римость каждого из компонентов газовой смеси при постоянной температуре пропорциональна парциаль–ному давлению компонента над жидкостью и не зави–сит от общего давления смеси и индивидуальности других компонентов.

Рi = Робщ ×(Xi)

где pi – парциальное давление компонента Хi;

Робщ – общее давление газовой смеси;

х(Хi) – молярная доля i-ого компонента.

Изучая растворимость газов в жидкостях в присутствии электролитов, русский враччфизиолог И. М. Сеченов (1829—1905) установил следующую закономерность (закон Сеченова): растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.

где, С (х) – растворимость газа х в присутствии электролита, С0(х) - растворимость газа х в чистом растворителе, Сэ – концентрация электролита, Кс – константа Сеченова, зависящая от природы газа, электролита и температуры.

Газы крови

        газы, содержащиеся в крови животных и человека в растворённом состоянии и в химически связанном виде. Полное исследование Г. к. человека было впервые проведено И. М. Сеченовым (1859). Г. к. состоят из газов, поступающих из окружающей среды, и газов, образующихся в организме; они поступают в кровь и выделяются из неё путём диффузии. Содержание каждого из растворённых газов в артериальной крови определяется его парциальным давлением в альвеолярном воздухе и коэффициентом его растворимости в крови. Наиболее важны кислород и углекислый газ, которые находятся в крови в растворённом и в связанном виде. Они образуют легко распадающиеся соединения: СО2 идёт на образование солей, входящих в Буферные системы крови, кислород, соединяясь с Гемоглобином, образует оксигемоглобин. В результате Газообмена содержание газов в венозной и артериальной крови различно (см. табл.):

         При значит. изменении давления воздуха (например, в горах, в кессонах) парциальное давление О2 и N2 резко меняется, что может вызвать кислородное голодание, Декомпрессионные заболевания и др. нарушения. Кроме постоянных Г. к., в кровь могут поступать наркотические, токсические и др. газы

Кессонной болезнью называют состояние, развивающееся вследствие перехода из среды с повышенным атмосферным давлением в среду с нормальным давлением. Следует подчеркнуть, что патологические изменения, характеризующие кессонную болезнь, развиваются не во время нахождения под повышенным давлением, а при слишком быстром переходе к нормальному атмосферному давлению, т. е. при декомпрессии.

 Кессонная болезнь может наблюдаться у водолазов, которым приходится работать при повышенном давлении под водой, а также у строительных рабочих, занятых на работах, проводимых так называемым кессонным способом под водой или в земле в насыщенных водой грунтах.

18. Коллигативные свойства – это свойства растворов, зависящие от числа частиц растворенного вещества. К коллигативным свойствам растворов относят:

1) понижение давления насыщенного пара растворителя над раствором,

2) понижение температуры замерзания и повышение температуры кипения растворов по сравнению с температурами замерзания и кипения чистых растворителей.

3) осмотическое давление.

 1 закон Рауля. Давление насыщенного пара растворителя над раствором пропорционально мольной доле растворителя.

 ,где Р – давления насыщенного пара растворителя над раствором, Па;

Р0 – давления насыщенного пара над растворителем, Па;

(р-ля) – мольная доля растворителя;

(раств. в-ва) – количество растворенного вещества, моль;

(р-ля) – количество вещества растворителя, моль.

Иногда закон Рауля определяют следующим образом. Относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества.

     или     

 где (раств. в-ва) – мольная доля растворенного вещества.

19.Температурой кипения жидкости является температура, при которой давление ее паров становится равным внешнему давлению (так, при 101,3 кПа температура кипения воды равна 100 °С). Температурой замерзания (кристаллизации) жидкости является температура, при которой давление пара над жидкостью равно давлению пара над твердой фазой. Если обозначить температуры замерзания и кипения раствора Т3 и Тк , а эти же вели–чины для растворителя Т°3 и Т°к , то получим:

ΔТк = Тк – Т°к > 0,

ΔТ3 = Т°3 – Т3 > 0.

Эффекты повышения температуры кипения и понижения температуры замерзания растворов качественно могут быть объяснены с помощью принципа Ле Шателье.

Действительно, если в равновесную систему «жидкость – пар» (например, Н2О(ж) – Н2О(г)), ввести растворимое нелетучее вещество, то давление пара раствори–теля над раствором уменьшится. Чтобы компенсировать понижение давления пара и достигнуть прежнего равно–весного состояния, раствор нужно нагреть до более вы–сокой температуры (больше 373°К), так как процесс эн–дотермический.

Методы эбулиоскопии и криоскопии основаны 0на измерении повышения точки кипения и соответственно понижения точки за­мерзания раствора анализируемого вещества по сравнению с чис­тым растворителем. Оба явления объясняются понижением давле­ния пара раствора относительно чистого растворителя.

Повышение температуры кипения и понижение температуры замерзания растворов зависят от концентрации (так называемые коллигативные эффекты). Для очень разбавленных растворов спра­ведливо следующее уравнение:

М„=КС■ ю3/д7;

где Мп — молекулярная масса; К— эбулиоскопическая (или криоскопическая) по­стоянная, К= R■ T7/(\(fiHp); С— концентрация раствора; Д 7— соответственно по­вышение температуры кипения или понижение температуры замерзания; R — уни­версальная газовая постоянная; Т— абсолютная температура кипения или замерза­ния растворителя; Нр — удельная теплота испарения растворителя.Эбулиоскопическая Кэ и криоскопическая Кк постоянные рав­ны соответственно повышению точки кипения и понижению точ­ки замерзания раствора, содержащего 1 моль вещества, т. е. 6,02 ■ 10 недиссоциированных частиц в 1 кг растворителя. Точки кипения и замерзания наиболее часто применяемых растворите­лей, а также молярные постоянные.

20. Осмос - самопроизвольная диффузия растворителя через полупроницаемую мембрану в раствор. Давление, которое нужно приложить к раствору, чтобы прекратить осмос, называется - осмотическим давлением. Осмотическое давление в растворах, как установил Вант - Гофф зависит от молярной концентрации раствора, т.е. от числа молекул растворенного вещества в единице объема и от температуры. π = См  R • Т - уравнение Вант - Гоффа где:См - молярная концентрация растворенного вещества,  R - универсальная газовая постоянная,  Т - абсолютная температура.

Так как молярная концентрация равна отношению числа молей растворенного вещества к объему раствора, то можно записать:

Росм · V = n2 · R ·T, Осмотическое давление биологических жидкостей в различных организмах неодинаково, так осмотическое давление у лягушек несколько ниже, чем у человека, а у некоторых морских животных, обитающих в воде со значительным содержанием солей оно выше. Известно, что в тканях растений, всасывающих воду из почвы, осмотическое давление достигает 5-20 атм, а у некоторых растений пустынь и солончаков - даже 170 атм.

Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) — безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы: 

где solut. — данный раствор, nel. solut. — раствор неэлектролита той же концентрации, Tbp — температура кипения, а Tmp — температура плавления (замерзания).

Взаимодействие ионов уменьшается с уменьшением их концентрации, то есть, разбавлением раствора, ведь тогда уменьшается вероятность встречи двух частичек. Экстраполируя разбавление в сторону бесконечности, коэффициент i стремится к своему максимальному значению, определяемому по формуле растворённого соединения. Степень диссоциации α, в соответствии с вышеупомянутой формулой зависимости между i и α, одновременно возрастает, приближаясь к единице (1). 

21. Явление осмоса играет важную роль во многих хими–ческих и биологических системах. Благодаря осмосу регулируется поступление воды в клетки и межклеточ–ные структуры. Упругость клеток (тургор), обеспечивающая ‘ластичность тканей и сохранение определенной формы органов, обусловлена осмотическим давлением. Животные и растительные клетки имеют оболочки или поверхностный слой протоплазмы, обладающие свойствами полупроницаемых мембран. При помещении этих клеток в растворы с различной концентрацией наблюдается осмос.

Растворы, имеющие одинаковое осмотическое давление, называются изотоническими. Если два раствора имеют различное осмотическое давление, то раствор с большим осмотическим давлением является гипертоническим по отношению ко второму, а второй – гипотоническим по отношению к первому. При помещении клеток в изотонический раствор они сохраняют свой размер и нормально функционируют.При помещении клеток в гипотонический раствор вода из менее концентрированного внешнего раствора переходит внутрь клеток, что приводит к их набуханию, а затем к разрыву оболочек и вытеканию клеточного содержимого. Такое разрушение клеток называется лизисом, в случае эритроцитов этот процесс называется гемолизом. Кровь с клеточным содержимым, выходящим наружу при гемолизе, за свой цвет называется лаковой кровью.При помещении клеток в гипертонический раствор вода из клеток уходит в более концентрированный раствор, и наблюдается сморщивание (высушивание) клеток. Это явление называется плазмолизом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]