Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химические реакторы Р ХО печ 25 09.doc
Скачиваний:
460
Добавлен:
10.02.2016
Размер:
2.06 Mб
Скачать

Структура математической модели химического реактора

Методы расчета и проектирование химических реакторов основаны на моделировании реакторов и процессов в них.

Моделирование - это метод изучения разных объектов, при котором исследование проводят на модели, а результаты количественно распространяют на оригинал. Модель может представлять собой уменьшенную по определенным законам (или в некоторых случаях увеличенную) копию реального объекта. Но моделью может быть и определенная система представлений о реальном объекте, который выражается как совокупность математических структур, уравнений, неравенств, таблиц, графиков. Такую модель называют математическим описанием объекта или его математической моделью.

Математическая модель химического реактора должна быть с одного стороны довольно простой, с другой стороны - довольно точно передавать количественные закономерности протекания процесса. Эти требования находятся в противоречии и разработка математической модели очень сложная задача.

Модель - специально созданный объект любой природы, бо­лее простой по сравнению с исследуемым по всем свойствам, кроме тех, которые надо изучить, и способный заменить исследуемый объект так, чтобы можно было получить новую инфор­мацию о нем.

Известный пример моделирования: обтекание самолета, ле­тящего в воздухе, исследуют обтеканием его модели в аэроди­намической трубе, В данном случае модель самолета - его гео­метрически подобная уменьшенная копия. Моделируется (исследуется) только обтекание корпуса самолета потоком воз­духа и не исследуются другие свойства самолета, например удобство и безопасность пассажира в кресле. Для этого надо построить другую модель - отдельное кресло с манекеном на устройстве, воспроизводящем возможные его положения в поле­те. Как видим, модель учитывает какие-то явления (обтекание корпуса самолета потоком воздуха в одном случае или располо­жение человека в кресле в другом случае при моделировании разных процессов в самолете) и параметры процессов (конфигурация крыльев и корпуса или конфигурация кресла). Учитываемые в модели явления назовем составляющими мо­дели.

Модель специально создают, чтобы исследовать какие-либо конкретные свойства. Для изучения разных свойств объекта может быть соз­дано несколько его моделей, каждая из которых отвечает опре­деленной цели исследования. Можно говорить о единстве "цель - модель". Если модель отражает большее (или меньшее) число свойств, то она называется более широкой (или более узкой). Используемое иногда понятие "общая модель" как модель, от­ражающая все свойства объекта, - бессмысленно по сути.

Чтобы достигнуть поставленной цели, на изучаемые свойства модели должны оказывать влияние те же факторы, что и на свойства объекта. В этом и заключается творческий и научный подход к построению модели: учесть именно те явления, кото­рые существенны для изучаемых свойств. Не все составляющие и параметры в одинаковой степени влияют на изучаемые свойства. Изменение некоторых параметров и наличие тех или иных составляющих может очень слабо влиять на эти свойства. Такие составляющие и параметры называют несущественными, и их можно не учитывать в модели. Соответственно, простая модель содержит лишь существенные составляющие, иначе мо­дель будет избыточной. Поэтому простая модель не есть простая по внешнему виду (например, несложная по структуре, кон­струкции). Но если в модель входят не все составляющие, суще­ственно влияющие на изучаемые свойства, то она будет непол­ной, и результаты ее исследования могут не отвечать свойствам объекта.

Обратим внимание на следующий признак модели: она должна предсказывать неизвестные свойства объекта, давать о нем новую информацию. Это может быть достигнуто, во-первых, если модель простая, и ее можно исследовать, работать с ней, и, во-вторых, если она достаточно полная, чтобы могли проявиться изучаемые свойства.

Впервые моделирование как метод научного познания был использован в аэро- и гидродинамике. Была развита теория по­добия, позволяющая переносить результаты экспериментов, получаемых на установках небольшого масштаба (моделях), на реальные объекты большого масштаба. Основой таких исследо­ваний является физическое моделирование, при котором природа модели и исследуемого объекта одна и та же. Физическое моде­лирование и теория подобия нашли широкое применение в хи­мической технологии при исследовании тепловых и диффузи­онных процессов. Были сделаны попытки использовать теорию подобия и для химических процессов и реакторов. Однако ее применение здесь оказалось весьма ограниченным из-за не­совместимости условий подобия для химических и физических составляющих процесса в реакторах разного масштаба. Напри­мер, степень превращения реагентов зависит от времени пребы­вания их в реакторе, равного отношению размера к скорости потока. Условия тепло- и массопереноса, как следует из теории подобия, зависит от критерия Рейнольдса, пропорционального произведению размера на скорость. Сделать одинаковыми в аппаратах разного масштаба и отношение, и произведение двух величин невозможно. Вклад химических и физических состав­ляющих реакционного процесса и их взаимовлияние и, следова­тельно, влияние их на результаты процесса в целом зависят от масштаба. В аппарате небольшого размера выделяющаяся тепло­та легко теряется и слабо влияет на скорость превращения. В аппарате большого размера выделяющаяся теплота легче "запирается" в реакторе, существенно влияет на поле темпера­тур и, следовательно, на скорость и результаты протекания реакции. Вклад физических составляющих в реакционный про­цесс в аппарате большого масштаба становится существенным.

Рис. 4. Классификация моделей

Трудности масштабного перехода для реакционных процес­сов удается преодолеть, используя математическое моделирова­ние, в котором модель и объект имеют разную физическую при­роду, но одинаковые свойства. Два устройства - механический маятник и замкнутый электрический контур, состоящий из кон­денсатора и катушки индуктивности, - имеют разную физи­ческую природу, но одинаковое свойство: колебания механиче­ские и электрические соответственно. Можно так подобрать параметры этих устройств (длину маятника и отношение ем­кости к индуктивности), что колебания по частоте будут одина­ковыми. Тогда электрический колебательный контур будет мо­делью маятника. Это возможно потому, что свойство обоих уст­ройств - колебания - описывается одними и теми же уравне­ниями. Отсюда и название вида моделирования - математиче­ское. Уравнение колебания в данном случае также является ма­тематической моделью и механического маятника, и электриче­ского контура. Соответственно, математические модели подраз­деляются на реальные, представленные неким физическим уст­ройством, и знаковые, представленные математическими урав­нениями. Классификация моделей приведена на рис. 4.

Естественно, для построения реальной математической моде­ли надо сначала создать знаковую. Поэтому, как правило, мате­матическую модель отождествляют только с уравнениями, опи­сывающими объект, т. е. со знаковой математической моделью, а исследование свойств этих уравнений называют математиче­ским моделированием. Универсальной реальной математи­ческой моделью является электронная вычислительная машина (ЭВМ). По уравнениям, описывающим объект, ЭВМ "настраи­вают" (программируют), и ее "поведение" будет описываться этими уравнениями.

Поскольку влияние физических и химических составляющих (явлений) на реакционный процесс зависит от масштаба, имен­но их выделение - наиболее существенный момент в математическом моделировании химических процессов и реакторов. В общем виде математическое моделирование реакторов можно представить схемой, показанной на рис. 5.

Рис. 5. Схема математического моделирования химических процессов и реакторов

Ответственным этапом является анализ процесса, протекающего в химическом реакторе; анализ выявляет составляющие процесса и их взаимо­действие. Затем определяют их закономерности: термодинами­ческие и кинетические для химических превращений, парамет­ры явлений переноса и т. д. На этом этапе используют данные экспериментальных исследований. Математическое моделиро­вание не исключает эксперимент, а активно его использует, но эксперимент прецизионный, более точный, чем может быть эксперимент на реакторе. Результаты анализа процесса и иссле­дования его составляющих позволяют построить математи­ческую модель процесса - уравнения, описывающие его. Их исследуют, используя математический аппарат качественного анализа и вычислительные методы, или, как говорят, проводят вычислительный эксперимент. Полученные свойства модели надо интерпретировать как свойства изучаемого объекта, в дан­ном случае химического реактора.

Выделение составляющих сложного процесса (его декомпо­зиция) должно отвечать также условию инвариантности выде­ленных составляющих к масштабу, влияние которого учитывают в параметрах полученных уравнений математической модели и граничных условиях. Требование инвариантности можно удо­влетворить, если использовать иерархический подход к построе­нию модели. Для этого декомпозицию процесса проводят не только на составляющие, но и по их масштабу. Существенной особенностью математических моделей процесса в реакторах является их иерархическое строение (рис..6).

В молекулярном масштабе протекает химическая реак­ция, состоящая из элементарных стадий. Ее свойства (например, скорость) не зависят от масштаба реактора, т. е. ско­рость реакции зависит от условий ее протекания независимо от того, как эти условия созданы. Результатом исследования на этом уровне является кинетическая модель – зависимость скорости реакции от условий. Следующий масштабный уровень, назовем его химический процесс, есть совокупность ре­акции и явлений переноса, таких, как диффузия, теплопровод­ность. Кинетическая модель реакции входит как одна из состав­ляющих. Объем, в котором рассматривается химический про­цесс, выбирается так, чтобы закономерности процесса не зави­сели от размера реактора. Например, это может быть зерно ка­тализатора. Скорость превращения в нем зависит только от раз­мера и характеристик зерна и от условий (концентрация и тем­пература), в которых оно находится, независимо от того, как эти условия созданы. Модель химического процесса входит как одна из составляющих на следующем масштабном уровне - реак­ционная зона. Другие составляющие - явления переноса -такого же масштаба. В масштабе реактора входят как состав­ляющие реакционная зона, узлы смешения, теплообмена и др. Таким образом, математическая модель процесса в реакторе представлена системой математических моделей разного мас­штаба.

Рис. 6. Иерархическая структура математической модели процесса в химическом реакторе

Иерархическая структура математической модели процесса в реакторе позволяет:

полностью описать свойства процесса путем детального ис­следования основных процессов разного масштаба;

проводить изучение сложного процесса по частям, применяя к каждой из них специфические, прецизионные методы иссле­дования, что повышает точность и надежность результатов;

установить связи между отдельными частями и выяснить их роль в работе реактора в целом;

облегчить изучение процесса на более высоких уровнях, так как исследованием процесса на низшем уровне укрупняется информация при переходе на более высокий уровень;

решать задачи масштабного перехода.

Изучение процесса в химическом реакторе будем проводить описанным выше научным методом - математическим модели­рованием.

При разработке математической модели целесообразно использовать иерархический подход к реактору как к сложной системе. (Иерархия - это расположение частей элементов целого в порядке от высшего до низшего). Суть этого подхода заключается в том, что сложная система рассматривается как совокупность подсистем, связанных между собой.

Реактор и реакционный узел, будучи сложными объектами, имеют многоступенчатую структуру и их математические модели строятся последовательно на основе предыдущего построения их составных частей и введение соотношений, которые связывают переход с одного уровня на другой.

Важную роль математического описания химического реактора играют балансовые уравнения, являющиеся выражением общих законов сохранения массы и энергии.

Материальный баланс — один из важнейших методов описания и анализа химико-технологических процессов. Он выражает закон сохранения вещества; уравнение баланса соответствует ут­верждению: приход вещества равен рас­ходу вещества. При описании химиче­ских реакций в потоке обычно записы­вают отдельное уравнение баланса для каждого из веществ.

Рис. 7. Схема материальных потоков в аппарате смешения

nj вх – nj вых -nj Xр = nj нак ,

где nj вх – количество вещества j, внесенное в элементарный объем ΔV за время Δτ с потоком участников реакции.

Qвх – Qвых Qхр Qт.о. = Qнач

Qвх – теплосодержание веществ, входящих в объем ΔV за время Δτ;

Qхр – теплота, выделившаяся или поглотившаяся в результате химической реакции;

Qт.о – теплота, израсходованная на теплообмен объема ΔV за время Δτ;

Для составления материального баланса по веществу А будем считать, что объемный расход реакционной смеси на входе в реактор V0, м3/ч, на выходе V. Концентрация вещества А в потоке, входящем в реактор CA,0, кмоль/м3, концентрация вещества А в выходящем потоке и в любой точке реактора составляет CA, кмоль/м3, химическая реакция протекает со скоростью ωA кмоль/м3 ч, определяемый и рассматриваемый промежуток времени dτ, при постоянной температуре, концентрации CA.

Тогда за время dτ в объем реактора V войдет nA вх = CA,0 V0 dτ, выйдет из реактора nA вых = CA V dτ. Израсходуется на химическую реакцию nA х.р. = ω Vр dτ.

Так как в реакторе находится CAVр моль вещества А, изменение этого количества за время dτ составит nA нак = d (CA Vр)

Таким образом уравнение материального баланса по веществу А для реактора идеального смешения имеет вид

CA,0 V0 dτ - CA V dτ – ωA Vр d τ = d (CA Vр)

Все члены этого уравнения измеряются в единицах количества вещества (кмоль). Разделим левую и правую часть на d τ

CA,0 V0 - CA V - ω Vр = (1) - мольные потоки вещества в единицу времени. Правая часть уравнения представляет собой скорость накопления вещества в реакторе. При постоянном объеме Vр скорость накопления можно представить

Vр dCA / dτ

Рассмотрим отдельный случай. Периодический реактор идеального смешения по условию

V0 = 0, V = 0.

или

CA = CA,0 (1 – XA)

dCA = - CA,0 dXA

Реактор идеального смешения периодический РИС-П

Реагенты загружаются в начале операции. При этом процесс слагается из трех стадий: загрузки сырья, его обработки (химическое превращение) и выгрузка готового продукта. После проведения всех этих операций они повторяются вновь. Продолжительность одного цикла, проводимого в периодическом реакторе, определяется по уравнению

τп = τ + τвсп ,

где τп - полное время цикла;

τ – рабочее время, затрачиваемое на проведение химической реакции;

τвсп – вспомогательное время

Реактор идеального смешения периодический называемый сокращенно РИС – П, представляет собой аппарат с мешалкой, в который периодически загружаются реагенты. В таком реакторе создается весьма интенсивное перемешивание, поэтому в любой момент времени концентрация реагентов одинакова во всем объеме аппарата и изменяется лишь во времени, по мере протекания химической реакции. Такое перемешивание можно считать идеальным, отсюда и название реактора.

Реактор идеального смешения периодический

Изменение концентрации исходного реагента А во времени и в объеме в РИС – П

Здесь NA,0 начальное количество исходного реагента А;

XA,0 – начальная степень превращения реагента А;

CA,0 – начальная концентрация реагента А в исходной смеси.

NA, CA, XA – то же в конце процесса;

τ – время;

у – пространственная координата (координата места).

Периодические химические процессы по своей природе всегда являются нестационарными (т. е. неустановившимися) , т. к. в ходе химической реакции изменяются параметры процесса во времени (например, концентрация веществ), т. к. происходит накопление продуктов реакции.

Для расчета реактора надо знать его уравнение, позволяющее определить рабочее время τ, необходимое для достижения заданной степени превращения ХА, при известной начальной концентрации вещества СА,0 и известной кинетике процесса, т. е. при известной скорости химической реакции ωА .

Основанием для получения уравнения реактора любого типа является материальный баланс, составленный по одному из компонентов реакционной смеси.

В общем случае, когда концентрация компонента непостоянна в различных точках реактора или непостоянна во времени, материальный баланс составляют в дифференциальной форме для элементарного объема реактора. При этом исходят из уравнения конвективного массообмена, в которое вводят дополнительный член ωА , учитывающий протекание химической реакции.

,

где СА – концентрация реагента в реакционной смеси;

x, y, z – пространственные координаты;

D – коэффициент молекулярной и конвективной диффузии;

ωA – скорость химической реакции.

Исходя из того, что в РИС – П вследствие интенсивного перемешивания все параметры одинаковы во всем объеме реактора в любой момент времени. В этом случае производная любого порядка от концентрации по осям x, y, z равны 0, тогда

Поэтому уравнение можно записать

Если реакция протекает без изменения объема, то текущая концентрация исходного вещества будет выражаться

СА = СА,0 (1 – ХА)

или

,

где знак “-” указывает на убыль вещества А.

Интегрируя это выражение в пределах изменения времени от 0 до τ и степени превращения от 0 до Х получим уравнение РИС – П

Уравнение является математическим описанием РИС – П. Исходя из этого уравнения можно определить - размеры реактора, а также исследовать эту модель с точки зрения нахождения оптимальных значений всех входящих в него параметров.

Реакторы периодического действия просты по конструкции, требуют небольшого вспомогательного оборудования. Поэтому они удобны для проведения опытных работ, изучения химической кинетики. В промышленности они обычно используются в малотоннажных производствах, для переработки дорогостоящих продуктов

.