Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лахтин_Матеориаловедение

.pdf
Скачиваний:
6161
Добавлен:
16.02.2016
Размер:
21.38 Mб
Скачать

а конструкционную сталь — для повышения прочности, твердости, получения достаточно высокой пластичности и вязкости, а для ряда деталей также высокой износостойкости.

Выбор температуры закалки.

Доэвтектоидные стали нагревают до температуры на 30— 50 °С

выше точки Ас3 (рис. 132). В этом случае сталь с исходной структурой перлит+феррит при нагреве приобретает аустенитную структуру, которая при последующем охлаждении со скоростью выше критической превращается в мартенсит. Закалку от температур, соответствующих межкритическому интервалу (Ас1Ac3), применяют только для листовой низколегированной низкоуглеродистой стали (см. с. 266) для получения структуры феррита с небольшими участками мартенсита (20—30 %), обеспечивающей хорошие механические свойства и штампуемость (см. с. 266). Во всех других случаях закалка доэвтектоидных сталей из межкритического интервала температур не применяется, так как механические свойства оказываются ниже, чем после закалки от температур выше точки

А3. Заэвтектоидные стали под закалку нагревают несколько выше температуры точки Ас1 (рис. 132, а). При таком нагреве образуется аустенит при сохранении некоторого количества цементита. После охлаждения структура стали состоит из мартенсита и нерастворимых частиц карбидов, обладающих высокой твердостью (рис. 132, б). Верхний предел температуры закалки для большинства заэвтектоидных сталей ограничивают, так как чрезмерное повышение температуры выше точки А1 связано с ростом зерна, что приводит к снижению прочности и сопротивления хрупкому разрушению. Поэтому интервал колебания температур закалки большинства сталей невелик (15—20 °С). Закалка от тем-

201

ператур выше точки Аcm снижает твердость стали за счет увеличения количества остаточного аустенита (рис. 132, б).

Для многих высоколегированных сталей температура нагрева под закалку значительно превышает критические точки А1 и А3 (на 150250 °С), что необходимо для перевода в твердый раствор специальных карбидов и получения требуемой легированности аустенита.

Это повышение температуры не ведет к заметному росту зерна, так как нерастворенные частицы карбидов тормозят рост зерна аустенита.

Продолжительность нагрева при аустенитизации стали. Продолжительность нагрева должна обеспечить прогрев изделия по сечению и завершение фазовых превращений, но не должна быть елишком большой, чтобы не вызвать роста зерна и обезуглероживания поверхностных слоев етали.

Общая продолжительность нагрева τобщ = τс.п + τи.в, где τс.п продолжительность сквозного прогрева до заданной (конечной) температуры, обусловленная формой и размером изделий, их расположением, типом печи, составом и свойствами стали и т. д.; τи.в продолжительность изотермической выдержки при данной температуре, не зависящая от формы и размера изделия и определяемая только составом и исходным состоянием стали.

В настоящее время разработаны инженерные методы расчета основных типовых параметров продолжительности нагрева, скорости нагрева, перепада температуры по толщине металла и т. д. Но часто пользуются опытными данными. На 1 мм сечения или толщины изделия из доэвтектоидных сталей продолжительность нагрева принимают в электропечах 4575 с, а в соляной ванне 1520 с.

Величина τи.в должна быть минимальной, но при этом обеспечивать завершение фазовых превращений в стали и необходимую концентрацию углерода и легирующих элементов в аустените.

Продолжительность изотермической выдержки при заданной температуре для деталей машин часто принимают равной 1525 % от продолжительности сквозного нагрева.

Выдержка в электрической печи при температуре закалки для инструмента из углеродистой стали (0,71,3 % С) рекомендуется 5080 с на 1 мм наименьшего сечения, а легированной стали 7090 с; при нагреве в соляной ванне соответственно 2025 с для углеродистой стали и 2530 с ДЛЯ легированной.

Фасонный инструмент и детали машин сложных форм при нагреве под закалку для уменьшения деформации рекомендуется предварительно подогревать в печи при 400600 °С.

Выбор среды для нагрева при термической обработке. При нагреве в пламенных или электрических печах взаимодействие печной атмосферы с поверхностью нагреваемого изделия приводит к окислению и обезуглероживанию стали, которое снижает твердость, механические свойства и износостойкость.

202

Для предохранения изделий от окисления и обезуглероживания нередко в рабочее пространство печи вводят защитную газовую среду (контролируемые атмосферы). В качестве таких сред применяются следующие атмосферы:

1) эндотермическая (условное обозначение КГВО), получаемая частичным сжиганием метана СН4 (природного газа) при коэффициенте избытка воздуха α = 0,25 в присутствии катализатора и содержащая 21 % СО, 40 % Н2, 2 % СН4, 37 % Ν2; состав эндотермической атмосферы можно регулировать таким образом, чтобы исключить окисление и обезуглероживание стали с любым содержанием углерода1. Широко применяют и экзоэндотермическую маловодородную атмосферу 20 % СО, 20 %

Н2 и 60 % Ν2; 2) экзотермическая, получаемая частичным сжиганием

природного газа при α = 0,6 без очистки и осушки (ПС06) или с очисткой и осушкой (ПСО-06); атмосфера ПСО-06 содержит 10 %

СО; 15—16 % Н2; 0,05—1,5 % СН4; 68—72 % Ν2; а ПС-06, кроме

того, до 6 % СО2 и 2,3 % Н2О; 3) экзотермическая, получаемая почти полным сжиганием

природного газа при α = 0,9 без очистки и осушки (ПС-09) и с очисткой и осушкой (ПСО-09), в последнем случае эта атмосфера содержит 2 % СО, 2 % Н2, 96 % Ν2; в атмосфере (ПС-09) присутствуют 10 % СО2 и 2,3 % Н2О (за счет соответствующего уменьшения количества азота); эту атмосферу применяют при отжиге стали.

Охлаждающие среды для закалки. Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения изделия (определенную прокаливаемость) и не должно вызывать закалочных дефектов: трещин, деформаций, коробления и высоких растягивающих остаточных напряжений в поверхностных слоях.

Наиболее желательна высокая скорость охлаждения (выше критической скорости закалки) в интервале температур А1 МH для подавления распада переохлажденного аустенита в области перлитного и промежуточного превращений и замедленное охлаждение в интервале температур мартенситного превращения МНМК. Высокая скорость охлаждения в мартенситном интервале температур нежелательна, так как ведет к увеличению уровня остаточных напряжений и даже к образованию трещин. В то же время слишком медленное охлаждение в интервале температур МНМК может привести к частичному отпуску мартенсита и увеличению количества остаточного аустенита вследствие его стабилизации, что снижает твердость стали.

Чаще для закалки используют кипящие жидкости воду, водные растворы щелочей и солей, масла. При закалке в этих средах различают три периода:

1 Реакции, идущие с поглощением теплоты, называют эндотермическими. В связи с этим появилось название атмосферы, получаемой в генераторах с подогревом.

203

1)пленочное кипение, когда на поверхности стали образуется «паровая рубашка»; в этот период скорость охлаждения сравнительно невелика;

2)пузырьковое кипение, наступающее при полном разрушении паровой пленки, наблюдаемое при охлаждении поверхности до температуры ниже критической; в этот период происходит быстрый отвод теплоты;

3)конвективный теплообмен, который отвечает температурам ниже температуры кипения охлаждающей жидкости; теплоотвод

вэтот период происходит с наименьшей скоростью.

Втабл. 2 приведены примерный температурный интервал пузырькового кипения и относительная интенсивность охлаждения

Ηв середине этого интервала для различных охлаждающих сред.

При закалке углеродистой и некоторых низколегированных сталей, имеющих малую устойчивость переохлажденного аустенита, в качестве охлаждающей среды применяют воду и водные растворы NaCl или NaOH.

Вода как охлаждающая среда имеет существенные недостатки. Высокая скорость охлаждения в области температур мартенситного превращения нередко приводит к образованию закалочных дефектов; с повышением температуры воды резко ухудшается ее закалочная способность (см. табл. 1). При закалке изделий в горячей воде вследствие их медленного охлаждения при высоких температурах и быстрого охлаждения при низких температурах тепловые напряжения получаются низкими, а наиболее опасные структурные высокими, что и может вызвать образование трещин. Наиболее высокой и равномерной охлаждающей способностью отличаются холодные 812 %- ные водные растворы NaCl и NaOH, которые хорошо зарекомендовали себя на практике.

При закалке в водных растворах паровая рубашка разрушается почти мгновенно и охлаждение происходит более равномерно и

204

в основном протекает на стадии пузырькового кипения. Увеличение охлаждающей способности достигается при использовании струйного или душевого охлаждения, широко применяемого, например, при поверхностной закалке.

Дальнейшим усовершенствованием методов охлаждения явилось применение смесей воды с воздухом, подаваемых через форсунки. Водовоздушные среды применяют для охлаждения крупных поковок, рельсов и т. д.

Для легированных сталей, обладающих более высокой устойчивостью переохлажденного аустенита при закалке, применяют минеральное масло (чаще нефтяное).

Масло как закалочная среда имеет следующие преимущества: небольшую скорость охлаждения в мартенситном интервале температур, что уменьшает возникновение закалочных дефектов, и постоянство закаливающей способности в широком интервале температур среды (20150 °С). К недостаткам следует отнести повышенную воспламеняемость (температура вспышки 165300 °С), недостаточную стабильность и низкую охлаждающую способность в области температур перлитного превращения, а также повышенную стоимость.

Температуру масла при закалке поддерживают в пределах 6090 °С, когда его вязкость оказывается минимальной.

Для закалки применяют водные растворы полимеров (ПК2, ПАА, УЗСП-1), снижающие скорость охлаждения в мартенситном интервале температур. Однако нужно учитывать, что растворимость полимеров в воде меняется с изменением температуры, что влечет за собой изменение охлаждающей способности.

Все шире начинают применять охлаждение под давлением в среде азота, аргона и водорода.

205

Закаливаемость и прокаливаемость стали. Под закаливаемостью понимают способность стали повышать твердость в результате закалки. Закаливаемость стали определяется в первую очередь содержанием в стали углерода. Чем больше в мартенсите углерода, тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость.

Под прокаливаемостью понимают способность стали получать закаленный слой в мартенситной или троосто-мартенситной структурой и высокой твердостью на ту или иную глубину.

Прокаливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если действительная скорость охлаждения в сердцевине изделия будет превышать критическую скорость закалки υκ (рис. 133, υκ'''), то сталь получит мартенсит-ную структуру по всему сечению и тем самым будет иметь сквозную прокаливаемость.

Если действительная скорость охлаждения в сердцевине будет меньше υκ κ', υκ''), то изделие прокалится только на некоторую глубину а, а' и прокаливаемость будет неполной. В этом случае в сердцевине произойдет распад аустенита с образованием пластинчатой ферритно-карбидной структуры (троостита, сорбита или перлита).

За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситной зоны (50 % мартенсита + + 50 % троостита). Диаметр заготовки, в центре которой после закалки в данной охлаждающей среде образуется полумартенситная структура, называют критическим диаметром DK. Критический диаметр определяет размер сечения изделия, прокаливающегося насквозь, т. е. получающего высокую твердость, а после отпуска и высокие механические свойства по всему сечению. Полу-мартенситная структура во многих случаях не обеспечивает максимум механических свойств — сильно снижается σ-1 и KCU. В связи с этим прокаливаемость нередко определяют по глубине закаленного слоя со структурой 95 % мартенсита. Критический диаметр для структуры 95 % мартенсита примерно на 25 % меньше критического диаметра, определенного по полумартенситной зоне. Полная прокаливаемость на структуру 99,9 % мартенсита составляет ~50 % полумартенситной прокаливаемости. Полумар-тенситную зону принимают в качестве критерия прокаливаемости потому, что ее легко определить по микроструктуре, но еще проще по твердости. Твердость полумартенситной структуры зависит от содержания в стали углерода. Например, при 0,13—0,22 % C твердость полумартенситной структуры углеродистой стали 25 HRC, легированной — 30HRC; при 0,28—0,32 % С соответственно 35 HRC и 40 HRC, при 0,43—0,52 % С — 45 HRC и 50 HRC и при 0,53—0,62 % С — 50 HRC и 55 HRC.

Прокаливаемость тем выше, чем меньше критическая скорость закалки, т. е. чем выше устойчивость переохлажденного аустенита.

206

Легированные стали вследствие более высокой устойчивости переохлажденного аустенита и соответственно меньшей критической скорости охлаждения (см. рис. 133, ν" и ν"') прокаливаются на большую глубину, чем углеродистые. Сильно повышают про-каливаемость марганец, хром, молибден и малые добавки бора (0,003—0,005 %), менее сильно влияют никель и кремний. Про-каливаемость особенно возрастает при одновременном введении в сталь нескольких легирующих элементов.

Устойчивость переохлажденного аустенита повышается, а критическая скорость закалки уменьшается только при том условии, если легирующие элементы растворены в аустените. Если легирующие элементы находятся в виде избыточных частиц карбидов, то они не повышают устойчивость аустенита и могут ее уменьшить, так как карбиды служат готовыми зародышами, облегчающими распад аустенита. Карбиды титана, ниобия и ванадия при нормально принятом нагреве под закалку обычно не растворяются в аустените и понижают прокаливаемость. Сильно влияет на прокали-ваемость величина зерна аустенита. В углеродистой стали при укрупнении зерна от балла 6 до балла 1— 2 (см. рис. 111) глубина закаленного слоя возрастает в 2—3 раза, поэтому увеличение температуры и длительности нагрева повышают прокаливаемость. Легирующие элементы, находящиеся в виде карбидов, не только создают дополнительные центры, способствующие распаду аустенита, но и измельчают его зерно, что также увеличивает критическую скорость закалки и уменьшает прокаливаемость.

При сквозной закалке свойства стали, и в частности твердость, по всему сечению изделия одинаковы. При несквозной закалке изменение структуры стали по сечению способствует соответствующим изменениям свойств. Распределение твердости по се-

207

чению закаленных цилиндров из разных сталей показано на рис. 134. При несквозной прокаливаемости твердость падает от поверхности к сердцевине. На рис. 134 видно, что критический диаметр полумартенситной зоны углеродистой стали в данных условиях обработки составляет 25 мм, хромистой ~50 мм и хромоникелевой ~125 мм. При несквозной прокаливаемости отпуск при высокой температуре уменьшает различие в твердости и временном сопротивлении по сечению. Однако предел текучести, ударная вязкость и относительное сужение в сердцевине образца остаются более низкими. Это объясняется разным характером строения ферритно-цементитной структуры. В закаленном слое в результате отпуска мартенсита образуется более дисперсная ферритно-цементитная структура зернистого строения, а в сердцевине она более грубая и имеет пластинчатое строение.

Влияние прокаливаемости на механические свойства можно показать на примере. Заготовки из углеродистой стали с 0,45 % С, диаметром 10 мм прокаливаются в воде насквозь. После отпуска при 550 °С получается структура сорбит отпуска. Для такой структуры характерны высокие механические свойства: σΒ =

= 800 МПа; σ0 ,2 = 650 МПа; δ = 16 %; ψ = 50 % и KCU = 1

МДж/м2. При диаметре заготовки 100 мм и закалке в воде скорость охлаждения в сердцевине значительно меньше критической vк, и там образуется структура из пластинчатого перлита и феррита. Эта структура обладает более низкими

механическими свойствами: σΒ = 700 МПа; σ0,2 = 450 МПа; δ = 13 %; ψ = 40 % и KCU = 0,5 МДж/м2. Для получения

одинаковых и высоких механических свойств по всему сечению во многих случаях необходимо обеспечить в процессе закалки сквозную про-каливаемость.

Прокаливаемость углеродистой стали в небольших сечениях (диаметром до 1520 мм) можно определить по виду излома закаленных образцов. Часто прокаливаемость определяют по кривым распределения твердости по сечению (см. рис. 134). Для этого образец ломают или разрезают и по диаметру сечения определяют твердость.

Прокаливаемость стали в общем случае определяют методом торцовой закалки (ГОСТ5657—69). Цилиндрическийоб-

разец определенной формы и размеров (рис. 135, а), нагретый до заданной температуры, охлаждают водой с торца на специальной установке. После охлаждения измеряют твердость по длине (высоте) образца. Так как скорость охлаждения убывает по мере увеличения расстояния от торца, будет уменьшаться и твердость. Результаты испытаний выражают графически в координатах твердость — расстояние от охлаждаемого торца (рис. 135, б). Определив расстояние от торца до участка с твердостью, соответствующей полумартенситной зоне данной стали (рис. 135, б, I), можно по специальным номограммам найти критический диаметр. Чтобы характеристика прокаливаемости стали не была связана с видом охладителя, при использовании номограмм вводят понятие об идеальном критическом диаметре,

который является наибольшим диаметром образца, прокаливаемого насквозь, при идеальном охлаждении. Поверхность образца в идеальном охладителе должна мгновенно принимать его температуру, т. е. охлаждение следует проводить с бесконечно большой скоростью. От идеального критического диаметра можно перейти к реальному критическому диаметру, используя номограмму, приведенную на рис. 135, б. Определим критический диаметр для стали 1 (см. рис. 135, б). Для этой стали расстояние от торца до поверхности полумартенситной зоны составляет 10 мм. Для определения критического диаметра на шкале расстояние от закаливаемого торца до полумартенситной зоны (рис. 136, а) находим деление 10 и опускаем перпендикуляр до пересечения с линией «идеальное охлаждение». От точки а проводим горизонтальную линию влево до пересечения с линией заданной охлаждаю-

209

щей среди вода (точка b) или масло (точка с). От точек b и c опускаем перпендикуляр до шкалы критический диаметр. Точки b' и c' показывают искомый критический диаметр.

На практике с достаточной точностью критический диаметр может быть определен по графику, представленному на рис. 136, б. Для этого на оси абсцисс откладывают расстояние от охлаждаемого торца до зоны, имеющей полумартенситную твердость, и восстанавливают перпендикуляр до пересечения с кривой для закалки в масле или воде. Горизонталь, проведенная от этой точки до ординаты, укажет величину DK. Например, для стали 2 (см. рис. 135) расстояние от торца до зоны с полумартенситной твердостью составляет 19 мм, тогда DH = 75 мм при закалке в воде и DK =50 мм при закалке в масле (см. рис. 136, б).

Прокаливаемость даже одной и той же стали может колебаться в значительных пределах в зависимости от изменений химического состава, величины зерна, размера и формы изделия и многих других факторов. В связи с этим прокаливаемость стали каждой марки характеризуют не кривой, а так называемой полосой про-каливаемости, которая не всегда отражает действительную прокаливаемость стали в изделии. Полосы прокаливаемости для углеродистой и легированной сталей, содержащих 0,4 % С, наглядно показывающие влияние легирующих элементов, приведены на рис. 137.

Внутренние напряжения в закаленной стали. Внутренние напряжения при закалке стали возникают вследствие неравномерного охлаждения поверхности и сердцевины изделия (эти напря-

210