Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лахтин_Матеориаловедение

.pdf
Скачиваний:
6155
Добавлен:
16.02.2016
Размер:
21.38 Mб
Скачать

ГЛ А В А VI. ВЛИЯНИЕ НАГРЕВА НА СТРУКТУРУ

ИСВОЙСТВА ДЕФОРМИРОВАННОГО МЕТАЛЛА

Большая часть работы (до 95 %), затрачиваемой на деформацию металла, превращается в теплоту (металл нагревается), остальная часть энергии аккумулируется в металле в виде повышенной плотности несовершенств строения (вакансий и, главным образом, дислокаций). О накоплении энергии свидетельствует также рост остаточных напряжений в результате деформации. В связи с этим состояние наклепанного металла термодинамически неустойчиво. При нагреве такого металла в нем протекают процессы возврата, полигонизации и рекристаллизации, обусловливающие возвращение всех свойств к свойствам металла до деформации.

I. ВОЗВРАТ И ПОЛИГОНИЗАЦИЯ

При нагреве до сравнительно низких температур (обычно ниже (0,2—0,3) Тпл1) начинается процесс возврата, под которым понимают повышение структурного совершенства наклепанного металла в результате уменьшения плотности дефектов строения, однако без заметных изменений структуры, видимой в световом микроскопе, по сравнению с деформированным состоянием.

В процессе возврата различают две стадии. При более низких температурах (ниже 0,2 Тпл) протекает собственно первая стадия возврата, когда происходят уменьшение точечных дефектов (вакансий) и небольшая перегруппировка дислокаций без образования новых субграниц.

Избыточные вакансии и межузельные атомы поглощаются дислокациями при перераспределении последних при нагреве. Кроме того, происходит сток вакансий к границам зерен, что определяет уменьшение их концентрации. Далее вакансия и межузельные атомы при встрече взаимодействуют с уменьшением энергии.

Вторая стадия возврата полигонизация, под которой понимают фрагментацию кристаллитов на субзерна (полигоны) с

малоугловыми границами происходит при нагреве до более высоких температур.

Для объяснения процесса полигонизации предложен следующий дислокационный механизм. При деформации кристалла, например, путем изгиба возникают дислокации, неупорядоченно распределенные в плоскостях скольжения (рис. 58, а). При нагреве, достаточном для протекания самодиффузии, дислокации различных знаков аннигилируют, а избыточные дислокации одного знака

1 Тпл — температура плавления, выраженная по абсолютной шкале температур. Отношение данной температуры к Тпл называют гомологической температурой.

81

выстраиваются в дислокационные стенки, что приводит к образованию в монокристалле или в зернах поликристалла субграниц, ограничивающих субзерна (полигоны), свободные от дислокаций (рис. 58, б). Процесс полигонизации этого классического типа протекает после небольших деформаций при нагреве до (0,25— 0,3) Тпл. На рис. 58, в представлены субзерна в структуре низкоуглеродистой стали.

Укрупнение субзерен (полигонов) при увеличении времени или повышении температуры и очищение их объема от дислокаций приводят к снижению прочности.

2. РЕКРИСТАЛЛИЗАЦИЯ

Первичная рекристаллизация. При дальнейшем повышении температуры подвижность атомов возрастает и при достижении определенной температуры образуются новые равноосные зерна.

Как видно из рис. 59, до температуры tп.р сохраняется деформированное зерно. При температуре выше tп.р в деформированном металле растут зародыши (рис. 59) новых зерен с неискаженной решеткой, отделенные от остальной части матрицы границами с большими углами разориентации (большеугловыми границами).

При нагреве наклепанного металла не восстанавливается старое зерно, а появляется совершенно новое зерно, размеры которого могут существенно отличаться от исходного. Образование новых, равноосных зерен вместо ориентированной волокнистой структуры деформированного металла называется рекристаллизацией обработки, или первичной рекристаллизацией.

Образование новых зерен и резкое снижение плотности дислокаций приводит к высвобождению основной доли накопленной в процессе холодной пластической деформации энергии в объеме металла. Это является термодинамическим стимулом рекристаллизации обработки. В результате рекристаллизации наклеп практи-

82

чески полностью снимается и свойства приближаются к их исходным значениям. Как видно из рис. 59, при рекристаллизации временное сопротивление σВ и особенно предел текучести σТ резко снижаются, а пластичность δ возрастает. Разупрочнение объясняется снятием искажения решетки и резким уменьшением плотности дислокаций. Плотностъ дислокаций после

рекристаллизации снижается с

1010 — 1012 до 106—108 см-2.

Наименьшую температуру начала рекристаллизации tп.р (см. рис. 59), при которой протекает рекристаллизация и происходит разупрочнение металла, называют

температурным порогом рекристаллизации.

Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации тем ниже, чем выше степень деформации, больше длительность нагрева или меньше величина зерна до деформации.

Температура начала рекристаллизации tп.р металлов, подвергнутых значительной деформации, для технически чистых металлов составляет примерно 0,4 Тпл (правило А. А. Бочвара), для чистых металлов снижается до (0,1—0,2) Тпл, а для сплавов твердых растворов возрастает до (0,5—0,6) Тпл.

Для полного снятия наклепа металл нагревают до более высоких температур, чтобы обеспечить высокую скорость рекристаллизации и полноту ее протекания. Такая термическая обработка получила название рекристаллизационного отжига.

Собирательная рекристаллизация. После завершения первичной рекристаллизации в процессе последующего нагрева происходит рост одних рекристаллизованных зерен за счет других. Процесс роста новых рекристаллизованных зерен называют

собирательной рекристаллизацией. Основной причиной собирательной рекристаллизации является стремление к уменьшению зерногра-ничной («поверхностной») энергии благодаря уменьшению протяженности границ при росте зерна. Дисперсные частицы второй фазы тормозят рост зерна. При температуре выше tпластичность может уменьшаться, что объясняется сильным росте зерна — явление перегрева при рекристаллизации (см. рис. 59).

83

Вторичная рекристаллизация. Если какие-то из новых зерен имеют предпочтительные условия для роста, то эту стадию рекристаллизации называют вторичной.

Зерна, растущие с большой скоростью, можно условно рассматривать как зародышевые центры, и поэтому процесс их роста получил название вторичной рекристаллизации. В

результате вторичной рекристаллизации образуется множество мелких зерен и небольшое число очень крупных зерен. Вторичная рекристаллизация, вероятно, вызывается благоприятной для роста кристаллографической ориентацией отдельных зерен, меньшей чем у других зерен концентрацией дефектов (величиной объемной энергии) и более высокой подвижностью границ в результате неравномерного выделения примесей. Вторичная рекристаллизация, вызывающая образование крупного зерна и разнозернистости, способствует снижению механических свойств металлов.

Величина зерна после рекристаллизации. Величина рекристал-

лизованного зерна оказывает большое влияние на свойства металла. Металлы и сплавы, имеющие мелкое зерно, обладают повышенной прочностью и вязкостью. Однако в некоторых случаях необходимо, чтобы металл имел крупное зерно. Так, трансформаторная сталь или техническое железо наиболее высокие магнитные свойства имеют при крупном зерне. Величина зерна после холодной пластической деформации и рекристаллизации может быть больше или меньше величины исходного зерна. Величина зерна зависит от температуры рекристаллизационного отжига (рис. 60, а), его продолжительности (рис. 60, б), степени предварительной деформации (рис. 60, в), химического состава сплава, величины исходного зерна, наличия нерастворимых примесей и т. д. При данной степени деформации с повышением температуры и при увеличении продолжительности отжига величина зерна возрастает. Величина рекристаллизованного зерна тем меньше, чем больше степень деформации (см. рис. 60, в). При температурах t1 и t2 (выше tп.р) образование рекристаллизованного зерна происходит не сразу (см. рис. 60, б), а через некоторый отрезок времени (0n, 0n') — инкубационный период.

84

При очень малых степенях деформации (см. рис. 60, в) нагрев не вызывает рекристаллизации. При 3—15 %-ной деформации величина зерна после отжига резко возрастает и может во много раз превысить величину исходного зерна. Такую степень деформации (f, f1) называют критической. После обжатий с критической степенью деформации также не происходит рекристаллизации по механизму образования новых зерен и их роста. Нагрев металла, подвергнутого обработке с критическими степенями деформации, вызывает быстрый рост одних исходных нерекристаллизованных зерен за счет поглощения соседних. Такой механизм рекристаллизации, сходный со вторичной рекристаллизацией, объясняется неоднородностью деформации разных зерен при небольших степенях деформации. Поэтому при нагреве становится возможным рост менее деформированных зерен, т. е. имеющих более низкое значение энергии Гиббса, за счет более деформированных, т. е. имеющих большую энергию Гиббса. Критическая степень деформации тем меньше, чем выше температура отжига (см. рис. 60, б).

Следовательно, критической называют такую минимальную степень деформации, выше которой при нагреве становится возможной первичная рекристаллизация.

Зависимость величины рекристаллизованного зерна от температуры и степени деформации часто изображают в виде диаграмм рекристаллизации (рис. 61). Эти диаграммы дают возможность в первом приближении выбрать режим рекристаллизационного отжига. Но следует учитывать, что результаты отжига зависят и от других факторов. Диаграммы рекристаллизации не учитывают влияния примесей, скорости нагрева и величины зерна до деформации. Чем быстрее нагрев, тем мельче зерно. При уменьшении величины исходного зерна повышается критическая степень деформации и рекристаллизованное зерно (при данной степени деформации) оказывается мельче.

Текстура рекристаллизации. После высоких степеней предшествующей деформации возникает текстура, которая нередко является причиной образования при последующем нагреве текстуры рекристаллизации. В этом случае новые рекристаллизованные

85

зерна имеют преимущественную кристаллографическую ориентацию. Характер текстуры рекристаллизации определяется условиями проведения отжига, видом предшествующей обработки давлением (прокатка, волочение и т. д.), а также количеством и природой примесей. При низких температурах отжига металлов с ГЦК решеткой (К12) текстура рекристаллизации такая же, как и текстура деформации, а при высоких она отличается от текстуры деформации или отсутствует. Текстуру рекристаллизации можно наблюдать в меди, алюминии, железе и других металлах. При образовании текстуры рекристаллизации отожженный поликристаллический металл характеризуется анизотропией свойств.

Так, при глубокой штамповке листов во избежание образования складчатости, волнистой кромки и т. д. лист должен деформироваться во всех направлениях одинаково, поэтому анизотропия в данном случае нежелательна. Анизотропию трансформаторной стали используют таким образом, чтобы максимальное значение магнитной проницаемости вдоль направления [100] было параллельно направлению магнитного потока.

3.ХОЛОДНАЯ И ГОРЯЧАЯ ДЕФОРМАЦИИ

Взависимости от соотношения температуры деформации

итемпературы рекристаллизации различают холодную и горячую деформации. Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.

Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры.

При этих температурах деформация также вызывает упрочнение («горячий наклеп»), которое полностью или частично снимается рекристаллизацией, протекающей при температурах обработки

ипри последующем охлаждении. В отличие от статической полигонизации и рекристаллизации, рассмотренных ранее, процессы полигонизации и рекристаллизации, происходящие в период деформации, называют динамическими.

При горячей обработке давлением (прокатке, прессовании, ковке, штамповке и т. д.) упрочнение в результате наклепа (повышение плотности дислокаций) непосредственно в процессе деформации непрерывно чередуется с процессом разупрочнения (уменьшением плотности дислокаций) при динамической полигонизации и рекристаллизации во время деформации и охлаждения. В этом основное отличие динамической полигонизации и рекристаллизации от статической.

Горячую деформацию в зависимости от состава сплава и скорости деформации обычно проводят при температурах (0,7— 0,75) Тпл.

86

Когда металл после деформации имеет частично рекристаллизованную структуру, то такую обработку правильнее называть неполной горячей, или теплой, деформацией.

Вопросы для самопроверки

1. Чем отличается процесс первой стадии возврата от процесса полигонизации?

2. Какие факторы влияют на температурный процесс рекристаллизации?

3. Чем вызван процесс собирательной рекристаллизации?

4.Проходит ли процесс рекристаллизации после деформации ниже критической?

5.Когда будет крупнее рекристаллизованное зерно: после деформации на

25 % или на 75 % ?

6.В чем различие между статической и динамической рекристаллизацией?

7.Какие факторы влияют на текстуру рекристаллизации? В каких случаях

текстура желательна и когда ее нужно избегать?

8.Что называют горячей, теплой и холодной деформацией?

ГЛ А В А VII. МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

1. ОБЩАЯ ХАРАКТЕРИСТИКА МЕХАНИЧЕСКИХ СВОЙСТВ

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

При оценке механических свойств металлических материалов различают несколько групп их критериев.

1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).

Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.

87

2. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

а) критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;

б) критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

3. Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

2. МЕХАНИЧЕСКИЕ СВОЙСТВА, ОПРЕДЕЛЯЕМЫЕ ПРИ СТАТИЧЕСКИХ ИСПЫТАНИЯХ

Статическими называют испытания, при которых прилагаемая к образцу нагрузка возрастает медленно и плавно.

Чаще применяют испытания на растяжение, позволяющие по результатам одного опыта установить несколько важных механических характеристик металла или сплава.

Для испытания на растяжение используют стандартные образцы (ГОСТ 1497—84). Машины для испытаний снабжены прибором, записывающим диаграмму растяжения (рис. 62).

Кривая 1 характеризует поведение (деформацию) металла под действием напряжений σ, величина которых является условной (σ = P/F0), где F0 — начальная площадь поперечного сечения. До точки А деформация пропорциональна напряжению. Тангенс угла наклона прямой ОА к оси абсцисс характеризует модуль упругости материала E = σ/δ (где δ — относительная деформа-

88

ция). Модуль упругости Ε определяет жесткость материала, интенсивность увеличения напряжения по мере упругой деформации. Физический смысл Ε сводится к тому, что он характеризует сопротивляемость металла упругой деформации, т. е. смещение атомов из положения равновесия в решетке. Модуль упругости практически не зависит от структуры металла и определяется силами межатомной связи. Все другие механические свойства являются структурно чувствительными и изменяются в зависимости от структуры (обработки) в широких пределах.

Закон пропорциональности между напряжением и деформацией является справедливым лишь в первом приближении. При точных измерениях даже при небольших напряжениях в упругой области наблюдаются отклонения от закона пропорциональности. Это явление называют неупругостью. Оно проявляется в том, что деформация, оставаясь обратимой, отстает по фазе от действующего напряжения. В связи с этим при нагрузке-разгрузке на диаграмме растяжения вместо прямой линии получается петля гистерезиса, так как линии нагрузки и разгрузки не совпадают между собой. Неупругость связана с движением точечных дефектов дислокации и атомов в приграничных объемах.

Напряжение, соответствующее точке А, называют пределом пропорциональности пп), Обычно определяют условный предел пропорциональности, т. е. напряжение, при котором отступление от линейной зависимости между нагрузкой и удлинением дости-

1 Неупругость является причиной внутреннего трения, которое характеризует необратимые потери энергии внутри металла при механических колебаниях. Площадь петли гистерезиса соответствует энергии рассеяния за один цикл на-гружения. Внутреннее трение имеет большое практическое значение.

89

гает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации β осью напряжений, увеличивается на 50 % своего значения на линейном (упругом) участке. Напряжения, не превышающие предела пропорциональности, практически вызывают только упругие (в микроскопическом смысле) деформации, поэтому нередко σпп отождествляют с условным пределом упругости1. Предел упругости определяется как напряжение, при котором остаточная деформация достирает 0,05 % (или еще меньше) первоначальной длины образца:

σ0,05 = P0,05/F0·

Напряжение, вызывающее остаточную деформацию, равную

0,2 %, называют условным пределом текучести:

σ0,2 = P0,2/F0·

При испытании железа и других металлов с ОЦК решеткой при достижении определенного напряжения σТ на кривой растяжения образуется площадка. Напряжение, при котором образец деформируется без увеличения растягивающей нагрузки, называется физическим пределом текучести:

σТ = PT/F0.

Предел текучести σ0,02 является расчетной характеристикой, некоторая доля от σ0,2 определяет допустимую нагрузку, исключающую остаточную деформацию. По величине σ0,2 при нормальной температуре различают три класса материалов (табл. 1).

Если допустимые напряжения определяются величиной упругой деформации (жесткая конструкция), то в расчетах используется величина модуля упругости Е. В этом случае стремиться к получению высокого значения σ0,2 не следует. Величиныдеформациямσ.пп и σ0,2 характеризуют сопротивление малым

Дальнейшее повышение нагрузки вызывает более значительную пластическую деформацию во всем объеме металла. Напря-

1 Реальный поликристаллический материал, вообще говоря, не имеет физического предела упругости, потому что всегда найдется некоторое количество незакрепленных дислокаций, которые начнут двигаться при напряжениях, мало отличных от нуля.

90