Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-лекция НР-10.doc
Скачиваний:
45
Добавлен:
17.02.2016
Размер:
516.61 Кб
Скачать

О скоростях деформаций

Если скорость частиц сплошной среды = (v 1, v2, v3), то за бесконечно малый промежуток времени dt среда испытывает бесконечно малую деформацию, определяемую перемещениями ui = vidt(i = 1, 2, 3). Компоненты этих деформаций, вычисленные по формулам (1.17), имеют общий множитель dt, разделив на который, получим

(1.25)

где ξij —компоненты тензора скоростей деформаций. Величины ξii определяют скорости удлинения (укорочения) единичных отрезков в направлениях охi, ξij(ij)— угловые скорости изменения первоначально прямых углов, составленных единичными отрезками вдоль координатных осей.

Подобно формуле (1.16) скорость удлинения (укорочения) любого единичного отрезка вычисляется по формуле

Аналогично соотношениям (1.20) — (1.22) инвариантами скорости деформации являются:

а) скорость относительного объемного расширения (сжатия)

(1.26)

б) интенсивность скоростей деформации сдвига относительно главных осей

(1.27)

где ,

,

— главные скорости сдвигов (относительно произвольной системы координат Н выражается формулой (1.21));

в) параметр Надаи .

Компоненты скорости деформации ξij, как и компоненты деформации εij, не могут быть произвольными. Они должны удовлетворять условиям совместимости, аналогичным условиям (1.24).

Подобно представлению (1.23) для компонент тензора {ξij} скоростей деформаций верно соотношение

(1.28)

где λij — компоненты, характеризующие только скорости деформации сдвига, называемые компонентами девиатора скорости деформаций.

Динамические величины и элементы теории напряжений

Для изучения движения сплошной среды в связи с причинами, которые это движение вызывают, вводят понятие о силах. Силы могут быть внешними и внутренними. Первые являются следствием воздействия на рассматриваемое тело других тел, а вторые возникают в результате взаимодействия элементов данного тела. Внешние и внутренние силы могут быть двоякого рода: объемные (или массовые) и поверхностные. Объемная сила действует на массу, заключенную в произвольном элементе объема тела, например сила тяжести.

Пусть(x,t)— объемная сила, отнесенная к единице объема. Тогда сила, действующая на бесконечно малый объем dV, равна

dV, а на объем V—равна (рис. 1).

Поверхностная сила действует на элементы, которые можно мысленно выделить внутри тела или на его поверхности. Сила, действующая на бесконечно малый элемент поверхности dS, равна , где — вектор силы, рассчитанный на единицу площадиэлемента и приложенный в любой его точке, называется вектором напряжения или просто напряжением (см. рис. 1).

Напряжение зависит от положения элементаdS, т. е. от ориентировки его в теле. Если требуется указать, что напряжение

относится к площадке с нормалью п, то пишут .

Проекции этого вектора на оси произвольной системы координат Ох1х2х3 обозначаются через σnj (j=1, 2, 3). В частности, проекции напряжений xi, отнесенные к площадкам, перпендикулярным к координатным осям Oxi, обозначаются через σij

(i, j = 1, 2, 3), где σii называются нормальными напряжениями, а σij = σji (ij) касательными напряжениями, действующими на этих площадках (рис. 5). Легко доказать следующие очень важные соотношения:

( i, j = 1,2,3), (1.29)

которые позволяют найти компоненты вектора напряжения для произвольной площадки с нормалью , проходящей через точку М;

αi = cos(n, хi) (i = 1, 2, 3).

Поэтому говорят, что совокупность шести величин σij, называемых компонентами симметричного тензора напряжений, полностью характеризует напряженное состояние в точке тела М.

Рис. 5. Расположение компонент тензора напряжений относительно выбранной декартовой системы координат

Рис. 6. Векторы напряжений в точке М, действующие в двух произвольно ориентированных площадках

Рис. 7. Нормальная и касательная проекции вектора напряжения

Пусть заданы две площадки, проходящие через одну и ту же точку М (рис. 6). Используя формулу (1.29), нетрудно доказать, что проекция напряжения , действующего на первую площадку, на нормаль ко второй равна проекции напряжения , действующего на вторую площадку, на нормаль к первой и вычисляется по формуле

(1.30)

где α1i и α2j — направляющие косинусы нормалей и. Этаформула позволяет вычислить проекцию на любое направление вектора напряжения, действующего на данную площадку. В частности, проектируя вектор на направление нормали, получаем нормальное напряжение (рис. 7)

(1.31)

Касательное напряжение на этой же площадке равно

(1.32)

где σn — величина вектора напряжения .

Из формулы (1.30) следуют формулы перехода от одной системы Ох1х2х3 координат к другой О;

(1.33)

где σ'кr — компоненты тензора напряжений относительно новой системы координат;

αкi = cos(), αrj = cos().

Например, зависимость между напряжениями в декартовой (Ох1х2х3) и цилиндрической (r, θ, z) системах координат с общей осью Ox3 = Oz имеет вид

σrr = σ11cos2θ + σ22 sin2θ + σ12 sin 2θ;

σθθ= σ11 sin2θ + σ22 cos2θ - σ12 sin 2θ; σzz = σ33;

σrθ =( σ22 - σ11)sin 2θ + σ12 cos2θ; (1.34)

σrz = σ13 cosθ + σ23sin θ;

σθz= - σ13 sinθ + σ23 cosθ;

где σrr—радиальное напряжение, действующее на площадке, перпендикулярной к радиусу; σθθ — тангенциальное (окружное) напряжение, действующее на площадке, нормаль которой перпендикулярна к радиусу.

Принимая во внимание известные соотношения аналитической геометрии

из формул (1.33) после суммирования левой и правой частей по к (при r = к) получается важное соотношение

(1.35)

Оно показывает, что величина σ, называемая средним нормальным напряжением, инвариантна по отношению к преобразованию системы координат.

Характерной особенностью напряженного состояния сплошной среды является наличие в каждой точке тела, по крайней мере, трех взаимно перпендикулярных площадок, на которых касательные напряжения σii (ij) равны нулю. Направления нормалей к этим площадкам образуют главные направления, которые не зависят от исходной системы координат. Соответствующие напряжения σii=σi называются главными нормальными напряжениями. Поэтому любое напряженное состояние в рассматриваемой точке может быть вызвано растяжением (сжатием) окрестности точки в трех взаимно перпендикулярных направлениях.

Главные нормальные напряжения могут быть найдены из следующего кубического уравнения:

корни этого уравнения могут быть только вещественными.

Так как решения этого уравнения хi = σi (i=1,2,3) не зависят от выбора системы координат, коэффициенты σ, А, В также не должны зависеть, т. е. они инвариантны. Это еще одно доказательство инвариантности среднего напряжения

(1.36)

Два других инварианта

(1.37)

физического смысла не имеют.

Рис. 8. Диаграмма Мора:

/, 2, 3 — окружности, координаты которых определяют нормальные и касательные напряжения на площадках, проходящих через главные оси 1, 2, 3 соответственно

Если главные направления совпадают с координатными осями (Охi), то формулы (1.31) — (1.34) упрощаются. Например, формулы (1.31) и (1.32) принимают вид

(1.38)

где αi= cos (n, xi).

Отсюда нетрудно получить, что напряжения рп и τn могут лежать только внутри области, заштрихованной на рис.8. Это так называемая диаграмма Мора, дающая наглядное представление о напряжениях в различных сечениях, проходящих через данную точку. Здесь принята нумерация главных осей такой, чтобы выполнялись условия

σ1 ≥ σ2 ≥ σ3 (1.39)

Практический интерес представляют сечения, проходящие через главные оси. На рис. 8 точкам какой-либо окружности 1, 2 или 3 отвечают площадки, содержащие соответствующую главную ось.

Если площадка содержит главную ось Oxt и наклонена под углом θ к оси Ох2, то из формул (1.38) получается

Эти напряжения соответствуют координатам точек окружности № 1 (см. рис. 8).

По аналогии можно записать формулы для напряжений, действующих на площадках, проходящих через две другие главные оси, иначе, для координат точек окружностей № 2 и 3 на рис. 8.

При θ = π/4, т. е. в сечениях, делящих пополам углы между главными плоскостями, касательные напряжения принимают экстремальные значения

называемые главными касательными напряжениями, а нормальные напряжения равны полусуммам

что соответствует координатам центров окружностей 1, 2 и 3 (см. рис. 8). Наибольшее из значений τi ( i = 1, 2, 3) называется максимальным касательным напряжением и обозначается τmax. Если условия (1.39) выполняются, то τmax = τ2.

Так как различные тела обладают различными механическими свойствами по отношению к сдвигу и равномерному всестороннему сжатию, удобно компоненты тензора напряжения представить в виде суммы

где Sij—компоненты тензора, характеризующего касательные напряжения в данной точке и называемого девиатором напряжений.

Нормальные составляющие девиатора обозначают Sii = σii — σ, а касательные составляющие sij = σij (ij).

Главные направления девиатора напряжений (Sij) и тензора напряжений (σij) совпадают, а главные значения si отличаются от σi, на величину среднего (гидростатического) давления и определяются кубическим уравнением

-s3 + A1s+B1=0,

все корни которого также вещественны.

Инварианты A1 и В1 легко получить из формул (1.37), если заменить σij на sij и σi на si.

Неотрицательную величину

(1.40)

называют

интенсивностью касательных напряжений.

Часто рассматривают приведенное напряжение или интенсивность напряжений

(1.41)

Величина Т равна нулю только в том случае, когда напряженное состояние есть состояние гидростатического давления.

Доказывается, что с погрешностью не более 7% имеет место равенство

Т ≈ 1,08 τmax. Для характеристики вида напряженного состояния, подобно характеристике деформационного состояния, используется параметр, введенный Лоде и Надаи:

который изменяется в пределах от —1 до +1. Он указывает на взаимоотношение главных нормальных напряжений, в частности на положение точки σ2 на диаграмме Мора. Для одних и тех же величин μσ диаграммы Мора подобны.

Для чистого растяжения элемента (σ1>0, σ2= σ3 = 0) μσ= —1, для чистого сжатия 1 = σ2 = 0, σ3<0) μσ= 1, для сдвига (σ1>0, σ2=0, σ3= σ1) μσ= 0, для гидростатического давления 1 = σ2 = σ3) μσ не имеет смысла.

Источник и сток в пространстве.

Рассмотрим еще один важный для дальнейшего пример потенциального течения. Пусть

(**)

где , a Q = const или Q = Q (t). Ясно, что поверхностями равного потенциала = constявляются в этом случае поверхностиr = const,т. е. концентрические сферы с центром в начале координат. Скоростьv =gradортогональна к этим сферам, т. е. направлена по радиусам. Линии тока являются лучами, выходящими из начала координат.

Пусть Q > 0;тогда, так какgradнаправлен в сторону роста, тоvнаправлена поr.Если Q < 0,тоv направлена по -r (рис. 6).Величина скорости равна:

|(gradr)| = .

Скорость стремится к нулю при rи к бесконечности приr  0.Точки нуль и бесконечность являются критическими. ПриQ> 0(1) имеем

вытекание жидкости из начала координат во всех направлениях —это течение называется точечным пространственным источником. При Q < 0 (2)втекание жидкости в начало координат —сток. В первом случае в бесконечно удаленной точке имеем сток, а во втором —источник.

Рис. 6

Вычислим объем жидкости, протекающей за единицу времени через поверхность сферы Sнекоторого радиусаrс центром в начале координат. Через элемент сферыdза единицу времени протекает объем жидкости d,а через всю сферу

(расход жидкости)

( можно вынести за знак интеграла, так как =constна поверхности сферы). Заметим, что первые два равенства верны всегда, когда = (r) и ортогональна к поверхности сферы S.Вычисленный объем жидкости не зависит отr. Таким образом, несмотря на то, что на разных сферах разного радиуса с центром в начале координат скорости разные, постоянная Qв потенциале (**)является объемом жидкости протекающей за единицу времени через каждую такую сферу. Величина Qназывается расходом или мощностью источника (стока).

Если Q = const,то источник или сток имеет постоянную мощность; еслиQ = Q (t)то переменную. Если в некоторый момент времени Qменяется в начале координат, то мгновенно измеряется поле скоростей во всем пространстве. Сигналы изменение Qсразу сказываются на всем поле скоростей, что, конечно, не может иметь места в действительности. Возмущения должны распространяться с некоторой конечной скоростью. Поэтому рассмотренное поле скоростей является определенной идеализацией, которая может достаточно хорошо отражать действительность только в том случае, когда рассматриваются течения жидкости с большой скоростью распространения возмущений. Во многих случаях можно считать, что такой жидкостью является, например, вода, в которой скорость распространения слабых возмущений 1450м/сек.

20