Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК физ.2.doc
Скачиваний:
106
Добавлен:
18.02.2016
Размер:
2.2 Mб
Скачать

Тема 13. Элементы квантовой статистики

Квантовая статистика исследует системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

Пусть система состоит из N частиц. Состояние каждой частицы определяется координатами x,y,z и соответствующих проекций импульса px, py, pz - 6 координат. Для N частиц - 6 N координат – это 6 N – мерное пространство называется фазовым.

Квантовая статистика, как и классическая изучает идеальный газ, так как реальную систему в хорошем приближении можно считать идеальным газом.

Электроны и другие частицы, у которых Ls – спин частиц равно нечетному числу, т.е. с полуцелым спином – фермионы, и подчиняются статистике Ферми-Дирака. С нулевым или целым спином – бозоны и подчиняются статистике Бозе-Эйнштейна.

Состояние системы невзаимодействующих частиц задается с помощью чисел заполнения Ni - числа, указывающие степень заполнения квантового состояния.

Для систем частиц, образованных бозонами Ni принимает любые целые числа 0,1,2….

Для систем частиц, образованных фермионами Ni принимает лишь два значения: 0 – для свободных состояний, 1 – для занятых состояний.

Сумма всех чисел заполнения должна быть равна числу частиц системы. Квантовая статистика позволяет подсчитать среднее число частиц в данном квантовом состоянии, т.е. определить <Ni> - среднее число заполнения.

Идеальный газ из бозонов – бозе – газ описывается квантовой статистикой Бозе-Эйнштейна.

Распределение бозонов по энергиям имеет вид

- распределение Бозе-Эйнштейна

где <Ni> - среднее число бозонов в квантовом состоянии с энергией Еi

k – постоянная Больцмана; Т – термодинамическая температура;

μ - химический потенциал, не зависит от энергии, а определяется только температурой и плотностью числа частиц. - так как иначе <Ni> отрицательное, что не имеет смысла.

Идеальный газ из фермионов – ферми – газ описывается распределением Ферми-Дирака.

Распределение фермионов по энергиям имеет вид

- распределение Ферми-Дирака

μ - может иметь положительное значение.

Если , то распределения Бозе-Эйнштейна и Ферми-Дирака переходят в классическоераспределение Максвелла-Больцмана

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Бозе-газ и ферми-газ – вырожденные газы, так как их поведение отличается от классического газа. Вырождение газов становится существенным при низких температурах и больших плотностях. Параметром вырождения является величина А. При , т.е. при малой степени вырождения, распределения Бозе-Эйнштейна и Ферми-Дирака переходят в классическое распределение Максвелла-Больцмана.

Температура Т0, ниже которой отчетливо проявляются квантовые свойства идеального газа, обусловленные тождественностью частиц - температура вырождения. Если поведение газа описывается классическими законами.

Тема 14. Атомное ядро

Согласно теории Резерфорда, атом состоит из положительно заряженного ядра и окружающих его электронов. Размеры ядра – 10-14-10-15м. Ядро состоит из протонов и нейтронов – нуклонов (лат. -ядро).

mp = 1,6726×10-27 кг mn - 1,6749×10-27 кг

mp >1836 m e mn >1839 m e

Общее число нуклонов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется зарядом Ze, где е-заряд протона, Z -зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в таблице Менделеева.

- химический элемент, А - массовое число, Z – номер в таблице Менделеева (число протонов в ядре).

Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме, конфигурацию электронных оболочек, величину и характер внутриатомного электрического поля.

Ядра, с одинаковым числом протонов Z в ядре, но разным числом нейтронов N называют изотопами.

А ядра с одинаковым массовым числом, но разным числом протонов Z называют изобарами.

Например: -водород; его изотопы - дейтерий, - тритий.

Ядра – изобары: , ,.

Радиус ядра определяется эмпирической формулой

где .

Атомные ядра характеризуются собственным моментом импульса(спином) имагнитным моментом.

Собственный момент импульса ядра– спин ядра складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов.

- спин ядра

I - спиновое ядерное квантовое число I = 0, 1/2, 1, 3/2 ,…

Ядра с четными массовыми числами А имеют целые спиновое ядерное квантовое число I, с нечетными массовыми числами А - полуцелые спиновое ядерное квантовое число I.

Магнитный момент ядра

gЯ – ядерное гиромагнитное отношение.

Единицей магнитных моментов ядер служит ядерный магнетон

Атомные ядра являются устойчивыми образованиями, следовательно, в ядре между нуклонами существует определенная связь.

Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра

где - дефект массы ядра.

На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.

Часто вместо энергии связи рассматривают удельную энергию связи - энергия связи, отнесенная к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер. Чем больше удельная энергия связи , тем устойчивее ядро. Наиболее устойчивыми являются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2,8,20,28,50,82,126. Особенно стабильны дважды магические ядра (их всего 5)

, , , ,.

Между нуклонами действуют особые для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами и относятся к классу сильных взаимодействий.

Основные свойства ядерных сил:

- ядерные силы – силы притяжения;

- ядерные силы – короткодействующие силы – их действие проявляется на расстоянии » 10-14 – 10-15 м;

- ядерным силам свойственно зарядовая независимость: ядерные силы, действующие между двумя протонами или двумя нейтронами, или между протоном и нейтроном одинаковы по величине;

- ядерным силам свойственно насыщение, т.е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

- ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов;

- ядерные силы не являются центральными, т.е.действующими по линии, соединяющей центры взаимодействующих нуклонов.

Под радиоактивностью понимают способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц.

Радиоактивность подразделяется на естественную- наблюдается у неустойчивых изотопов, существующих в природе иискусственную- наблюдается у изотопов, полученных посредством ядерных реакции. Принципиального различия нет и законы радиоактивного распада одинаковы.

Радиоактивное излучение бывает трех типов: a, bиg- излучения.

aизлучение – поток ядер атомов гелияНе;

b - излучение – поток электронов;

g -излучение– электромагнитная волна с длиной волны < 1010м и вследствие этого обладает корпускулярными свойствами, т.е. является потоком

g- квантов – фотонов.

Под радиоактивным распадомпонимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее, радиоактивный распад называетсяматеринским, возникающее ядро –дочерним..

-закон радиоактивного распада

где - начальное число нераспавшихся ядер (приt = 0);

N – число нераспавшихся ядер в момент времениt;

l- постоянная радиоактивного распада, знак «-» указывает, что общее число радиоактивных ядер в процессе распада уменьшается.

Интенсивностьпроцесса характеризуют:

- период полураспадаТ1/2– время, за которое исходное число радиоактивных ядер уменьшается вдвое

- среднее время жизнирадиоактивного ядраt

- активность нуклида– ядра

[бк] – беккерель

Внесистемная единица [ки] – кюри

Радиоактивный распад происходит в соответствии с правилом смещения.

для a- распада -- à

для b- распада -- à