Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект+лекций+ОФ+ПГС+2010г.Doc
Скачиваний:
258
Добавлен:
21.02.2016
Размер:
6.59 Mб
Скачать

Лекция 7. Фундаменты глубокого заложения.

  1. Опускные колодцы. Опускной колодец представляет собой открытую сверху и снизу железобетонную (реже стальную или бетонную) конструкцию в форме цилиндрической или призматической оболочки, стены которой имеют, как правило, в нижней части выступающие наружу консоли, называемые ножом (рис. 7.1).

3 Рис. 7.1. Конструкция опускного колодца:

1 цилиндрическая оболочка; 2 нож; 3 переместившаяся часть опускного колодца;

5 разрабатываемый грунт.

1

4

2

5

Консоли имеют заостренную к низу коническую форму и обычно усилены металлом. Опускные колодцы погружаются в грунт под действием собственного веса по мере разработки и удаления грунта, расположенного внутри колодца и ниже его ножа. Стены колодца либо сооружаются на нулевой отметке на полную высоту, либо наращиваются по мере погружения колодца в грунт. Погружение опускного колодца на отметки ниже уровня грунтовых вод осуществляется, как правило, с организацией местного водопонижения или с применением технологий замораживания водонасыщенных слоев грунта. Неглубокие колодцы могут опускаться ниже уровня грунтовых вод без водопонижения с разработкой грунта в колодце под водой. Наличие выступающих за наружную поверхность стен опускного колодца консолей в его нижней части уменьшает сопротивление грунта погружению колодца в грунт. При этом по высоте колодца между его стенами и окружающим грунтом образуется свободное пространство в форме щели или узкой траншеи. Стены такой траншеи при большой глубине опускания, а также в слабых грунтах могут терять устойчивость. Следствием последнего является формирование по боковым поверхностям стен

опускного колодца сил активного давления грунта, приводящих к увеличению сил трения, препятствующих опусканию конструкции в грунт. Для уменьшения сил трения по боковым поверхностям стен пространство между ними и окружающим грунтом, образующееся по мере погружения опускного колодца, заполняется тиксотропным раствором. Для изготовления таких растворов (водных суспензий) используются тонкодисперсные бентонитовые глины. Тиксотропия – это свойство тонкодисперсных систем удерживать воду (не расслаиваться) за счет сил электростатического притяжения между минеральными частицами. Ниже уровня грунтовых вод устойчивость вертикальной выработки в грунте, окружающей опускной колодец, может обеспечиваться также давлением в грунтовой воде.

После достижения опускным колодцем проектной отметки заложения фундамента его внутренняя полость целиком или частично заполняется бетоном. При высоком уровне грунтовых вод возможны варианты бетонирования с временным водопонижением или подводного бетонирования. Бетонированию подлежит также пространство между стенами опускного колодца и окружающим грунтом. При заполнении этого пространства тиксотропным раствором бетонирование производится под тиксотропным раствором с его вытеснением. В верхней части опускного колодца сооружается распределительная железобетонная плита, на которой размещается верхнее строение.

По технологии опускного колодца могут возводиться подземные сооружения, такие как насосные станции, технологические подвалы, подземные гаражи и т.п. В этом случае в основании опускного колодца после его погружения устраивается железобетонная плита, рассчитанная на избыточное давление в грунтовой воде. Конструкция опускного колодца проверяется на всплытие. Опускные колодцы – сооружения имеют размеры в плане от 6 м до 100 – 150 м и погружаются на глубину от 5 м до 50 м. В качестве примера подземного сооружения, возведенного по технологии опускного колодца, можно привести подземный многоэтажный гараж на тысячу автомобилей в Женеве (Швейцария).

  1. Расчет опускного колодца. Расчеты выполняют для стадии возведения и для стадии эксплуатации. В стадии возведения (рис. 7.2) проверяют прочность стен опускного колодца при действии активного давления грунта. Поперечные сечения призматического фундамента

r

Pa

R

pr

N M

Fh y

z1

Pa Ph

d

Pv

z

li=const bi

Рис. 7.2. Расчётные схемы опускного колодца: yi

а в стадии изготовления; б в стадии эксплуатации.

рассчитывают как замкнутые рамы, нагруженные по контуру силами активного давления грунта. Кольцевые напряжения в стене цилиндрического фундамента определяют по формуле Ляме для толстостенного цилиндра:

o p r

2 R pa

R r

R ,

R r

(7.1)

где R, r – соответственно наружный и внутренний диаметр поперечного сечения опускного колодца; pa – активное давление грунта в рассматриваемом сечении.

Силы Еkn, действующие по нормали к поверхностям ножей, определяются по разности силы веса фундамента и сил трения по его боковым поверхностям. На действие указанных сил рассчитываются ножи опускного колодца как консоли.

В стадии эксплуатации рассматриваются две возможные схемы расчета опускного колодца в зависимости от показателя относительной жесткости фундамента и основания , определяемого по формуле:

 5 C y ;

EI

C y

K d ,

c

(7.2)

где К – коэффициент пропорциональности (кН/м4), принимаемый по справочным данным, например, по нормам на проектирование свайных фундаментов; d – глубина заложения фундамента; c – коэффициент условий работы; EI – изгибная жесткость поперечного сечения фундамента.

Если d < 2,5, фундамент принимается в расчете абсолютно жестким. В противном случае фундамент рассчитывается как стержень конечной жесткости в грунтовой среде (см. лекцию 6, расчет свайных фундаментов на горизонтальные и моментные нагрузки).

Расчет фундамента как абсолютно жесткого тела производится на

воздействие вертикальных,

u0 x

y S0

0

z

Рис. 7.3. Основная система при расчёте опускного колодца на абсолютно жёсткое тело: S0, u0, 0 неизвестные метода перемещений.

горизонтальных и моментных нагрузок, приложенных в его верхнем сечении, с учетом давлений грунта на его боковых поверхностях (рис. 7.3). В расчетах используется коэффициент жесткости основания подошвы фундамента при действии вертикальных нагрузок Cz и коэффициент жесткости основания боковых поверхностей при действии горизонтальных нагрузок Cy,i. Первый коэффициент рассчитывается по осадкам условного фундамента, определяемых методом послойного

суммирования (см. лекцию 6). Второй коэффициент рассчитываетсяпо формуле:

C y, i

K zi ,

c

(7.3)

где K, c – то же, что в формуле (2); zi – глубина i–го сечения от планировочной отметки; l – размер поперечного сечения фундамента в направлении, перпендикулярном действию момента.

В расчете учитываются силы трения по боковым поверхностям фундамента, определяемые по формуле:

T f u (d 2,5) ,

(7.4)

где f – расчетное сопротивление грунта по боковой поверхности фундамента, осредненное по его высоте (принимается по справочным данным, например, по нормам на проектирование свайных фундаментов); u, d – соответственно периметр поперечного сечения и высота фундамента (м).

Расчетная схема фундамента какабсолютно жесткого тела представлена на рис. 7.3. Неизвестными, которые подлежат определению в этой задаче, являются перемещения фундамента как жесткого целого (два линейных и одно угловое). Свяжем эти перемещения с началом системы координат, размещенным в центре верхнего обреза фундамента. Выразим давления грунта на поверхностях фундамента через неизвестные перемещения:

ph , i

C y , i (u0  0 zi ) ;

pv , i

C z (s0  0 yi ) ,

(7.5)

где u0, s0, 0 – неизвестные перемещения фундамента как жесткого целого;

zi, yi – координаты сечений, в которых определяются давления.

Неизвестные перемещения фундамента определим из трех уравнений равновесия:

Y 0;

Fh ph, i li zi ;

Z 0;

N T

pv, i bi yi ;

(7.6)

M o

0;

M ph, i li zi zi pv, i bi yi yi ,

где li, bi – размеры поперечного сечения фундамента в плоскости, перпендикулярной действию момента, соответственно на глубине zi и на уровне подошвы в сечении с координатой yi.

Понайденным из системы уравнений (7.6) перемещениям определяются с помощью формул (7.5) давления грунта на поверхностях фундамента. Полученные эпюры давлений вместе с заданными нагрузками позволяют определить внутренние усилия в сечениях фундамента и выполнить проверки по их прочности.

Опускной колодец – сооружение рассчитывается как подземное сооружение. При этом одной из основных проверок является проверка на всплытие сооружения под действием избыточного давления в грунтовой воде, а также расчет на эти давления плиты днища сооружения.

  1. Фундаменты типа стена в грунте. Устраиваются путем бетонирования под тиксотропным раствором глубоких траншей, разрабатываемых в грунте землеройными механизмами. Для обеспечения

направленной разработки грунта на поверхности устраивается специальная конструкция (рис. 7.4), которая называется форшахтой. Стенки траншеи удерживаются от обрушения давлением в тиксотропном растворе, который постоянно добавляется в траншею при ее разработке, а также обновляется при выпадении из него осадка.

2

1

Рис. 7.4. Конструктивные элементы

5 3 фундамента типа стена в грунте: 1 траншея; 2 форшахта; 3 тиксотропный раствор;

4 бетон замоноличивания; 5 арматурный

  1. каркас.

Перед бетонированием конструкции фундамента в траншею могут устанавливаться арматурные каркасы, если это предусмотрено проектом. Описанная здесь технология устройства фундаментов часто используется для возведения подземных частей сооружений. В этом случае в первую очередь устраивается стена в грунте по периметру сооружения. Затем могут устраиваться колонны внутри сооружения путем бетонирования пробуренных скважин. После этого устраивается перекрытие на нулевой отметке с оставлением в нем необходимых технологических проемов для извлечения разрабатываемого грунта. Возведение сооружения осуществляется сверху вниз с устройством междуэтажных перекрытий, обеспечивающих устойчивость вскрываемых стен в грунте. При использовании стены в грунте в качестве фундамента сооружения выполняют мероприятия по извлечению со дна траншеи перед ее бетонированием возможных непрочных включений, в том числе в виде глины, выпадающей из тиксотропного раствора. Несущая способность фундамента в виде стены в грунте обеспечивается сопротивлением грунта по подошве и боковым поверхностям заглубленной части конструкции. При этом в качестве исходных данных для выполнения таких расчетов используют справочные данные о сопротивлении грунта по подошве и

боковым поверхностям, например, заимствованным из норм на проектирование свайных фундаментов.