Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метода.doc
Скачиваний:
250
Добавлен:
22.02.2016
Размер:
32.57 Mб
Скачать

Рабочие жидкости для гидросистем сельскохозяйственных машин

Жидкость гидропривода является рабочим элементом, позволяющим передавать энергию от насоса к гидравлическому двигателю. Рабочие жидкости объемных гидроприводов должны иметь хорошие смазывающие свойства по отношению к материалам трущихся пар и уплотнений, малое изменение вязкости в диапазоне рабочих температур, высокий модуль упругости, малую упругость паров и высокую температуру кипения, быть нейтральным к материалам гидравлических агрегатов и защитным покрытиям, а также обладать высокой механической стойкостью, стабильностью характеристик в процессе хранения и эксплуатации.

Выбор марки минерального масла определяется температурными условиями, режимом работы гидропривода и его номинальным давлением, которым должно соответствовать важнейшее физическое свойство масла — вязкость. Завышение или занижение вязкости масла приводит к ухудшению эксплуатационных свойств гидропривода.

Для гидроприводов с легким режимом работы и меньшим номинальным давлением следует применять масла с меньшей вязкостью, чем для гидроприводов с тяжелым режимом работы и большим номинальным давлением. Так, при давлении 7…20 МПа следует применять масло с кинематическим коэффициентом вязкости ν = 0,2…0,4 см²/с, при температуре 50 ºС.

В зависимости от типа насоса, применяемого в гидроприводе, можно рекомендовать рабочие жидкости:

  • для аксиально-поршневых насосов, вязкость масла: минимальная ν = 0,06…0,08 см²/с и максимальная ν = 18…20 см²/с;

  • для роторно-пластинчатых насосов, вязкость масла: минимальная ν = 0,1…0,12 см²/с и максимальная ν = 35…45 см²/с;

  • для шестеренных насосов, вязкость масла: минимальная ν = 0,16…0,18 см²/с и максимальная ν = 45…50 см²/с.

Характеристики рабочих жидкостей для систем гидроприводов приведены в приложении 1.

Выбор гидродвигателей. Гидродвигатели возвратно-поступательного движения (силовые гидроцилиндры)

Основными параметрами, по которым выбираются гидродвигатели возвратно-поступательного движения, являются:

—номинальное усилие на штоке гидроцилиндра, H;

—ход поршня гидроцилиндра, м;

—скорость движения поршня, исходя из требований выполнения технологического процесса.

При выборе гидроцилиндра по развиваемому усилию следует соблюдать условие:

где — усилие на рабочем органе сельскохозяйственной машины, определяется из исходных данных, H;

—усилие, которое может развивать гидроцилиндр.

Технические данные гидроцилиндров приведены в приложении 2.

После этого гидроцилиндр следует проверить на и .

Определение диаметра гидроцилиндра или давления в полостях гидроцилиндра осуществляется в зависимости от направления действия рабочего усилия. При работе штока на сжатие (выталкивание штока) (рисунки 9.1, а и г) рабочая жидкость под давлением подается в поршневую полость и создает на штоке усилие , при этом в штоковой полости возникает сила сопротивления, вызванная противодавлением .

Рисунок 9.1 — Расчет гидроцилиндра:

а, б — противодействующая нагрузка; в, г — попутная нагрузка; а, г — шток работает на выталкивание; б, в — шток работает на втягивание

В этом случае следует использовать зависимость:

, (9.1)

где — заданное рабочее усилие;

—рабочее давление на входе;

—давление в штоковой полости, = 0,3…0,5 МПа, можно принять предварительно (или определить потери в сливной линии);

φ — коэффициент мультипликации, который определяется по формуле:

, (9.2)

или можно принять в расчетах φ = 1,33 или 1,65.

—механический КПД гидроцилиндра, значение которого приведены в таблице 9.2.

Таблица 9.2 — Значение механического КПД гидроцилиндров в зависимости от вида уплотнения и диаметра

Вид уплотнений

Резиновыми манжетами

Кольцами

Резиновыми

Чугунными

Диаметр, мм

D

40–60

80–125

110–120

до 400

до 500

ηм.ц

0,95

0,95

0,97

0,97

0,95

При работе штока на втягивание (рисунках 9.6, б и в) масло подается в штоковую полость, а сила сопротивления создается противодавлением р в поршневой полости. В этом случае следует использовать зависимость:

, (9.3)

Действительная скорость перемещения поршня определяется по формуле:

, (9.4)

где — расход рабочей жидкости поступающей в гидроцилиндр;

—эффективная площадь поршня со стороны нагнетания;

—объемный КПД гидроцилиндра.

В гидроцилиндрах с уплотнениями манжетами или резиновыми кольцами утечки практически отсутствуют, поэтому = 1.

Толщину стенки корпуса гидроцилиндра определяем из выражения:

, (9.5)

где— допустимое напряжение растяжения материала гидроцилиндра;

—максимальное давление нагнетания.

Прочность крышки гидроцилиндра определяется из условия:

, (9.6)

где — момент сопротивления;

δ — толщина плоскости дна цилиндра.

Штоки гидроцилиндров, работающие на сжатие при длине рассчитывают на продольный изгиб.

Для коротких штоков справедлива формула:

. (9.7)

Корпуса гидроцилиндров при давлении до 20 МПа изготавливаются из стальных труб с , при давлении свыше 20 МПа — из ковкого чугуна с, а при давлении до 15 МПа — из чугуна с