Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МатАна шпора.doc
Скачиваний:
69
Добавлен:
26.02.2016
Размер:
482.3 Кб
Скачать

Интегральный признак сходимости. Сходимость ряда

Теорема. Пусть   - непрерывная, неотрицательная, монотонно убывающая функция, определенная при . Тогда ряд  и интеграл   либо оба сходятся, либо оба расходятся.

Доказательство. Ввиду монотонности при всех  выполняются неравенства . Интегрируя, получаем . Тогда , или . Поэтому если  сходится, то . Тогда    и ,   ряд сходится.

Пусть теперь наоборот, известно, что ряд сходится. Тогда . Взяв произвольное   выберем  так, чтобы . Тогда . Значит,   сходится.

Абсолютная сходимость. Свойства абсолютно сходящихся рядов

Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд .

Легко доказать, что из сходимости ряда  вытекает сходимость ряда . По критерию Коши, примененному к , получаем:  . Из полученного неравенства следует, что  и для исходного ряда также выполнен критерий Коши, следовательно он сходится.

Обозначим , т.е. , . Очевидны равенства: . Рассмотрим ряды   и . Если они сходятся, то сходится и ряд , т.е. ряд абсолютно сходится. Если же сходятся ряды , то, т.к. , ряды   и  тоже сходятся. Таким образом, для абсолютной сходимости необходима и достаточна сходимость рядов   и .

(признак Лейбница).

Если члены знакочередующегося ряда (9.4.1), будучи взяты по модулю, образуют не возрастающую бесконечно малую последовательность, т.е. и, то этот рядсходится.

Приведем примеры знакочередующихся рядов.

Исследовать сходимость ряда .

Этот ряд сходится по признаку Лейбница, так как его члены убывают по абсолютной величине и при.

Исследовать сходимость ряда .

Нетрудно убедиться, что данный ряд удовлетворяет условиям Теоремы 1 и потому сходится.

Замечание. В теореме Лейбница существенно не только условие , но и условие. Так, например, для рядавторое условие нарушено и, хотя, ряд расходится. Это видно, если данный ряд представить в виде, т.е. удвоенного гармонического ряда.

Под знакопеременным рядом будем понимать ряд, в котором любой его член может быть как положительным, так и отрицательным.

 

Рассмотрим случай ряда с членами, имеющими произвольные знаки:

. (9.4.2)

Одновременно рассмотрим ряд

, (9.4.3)

где - члены ряда (9.4.2).

(достаточный признак сходимости знакопеременного ряда). Из сходимости ряда (9.4.3) следует сходимость ряда (9.4.2).

Признак Даламбера сходимости знакоположительного ряда

Пусть дан знакоположительный ряд и существует. Тогда, еслиq < 1, то ряд сходится; если q > 1, то ряд расходится.

Доказательство: 1) пусть q < 1, докажем, что ряд сходится. Поскольку существует предел , можно записатьилиan (q - ) < an+1 < an (q + ). Выберем  таким образом, чтобы q +  < 1. Из полученного двойного неравенства и неравенства q +  < 1 следует, что

aN+2 < (q + ) aN+1;

aN+3 < (q + ) aN+2 < (q + )2 aN+1;

aN+4 < (q + ) aN+3 < (q + )3 aN+2 < (q + )3 aN+1.

Итак, члены ряда aN+2 + aN+3 + aN+4 +… меньше соответствующих членов бесконечной геометрической прогрессии aN+1 (q + ) + aN+2 (q + )2 + aN+3 (q + )3 +… Знаменатель прогрессии меньше единицы, поэтому прогрессия представляет собой сходящийся ряд (см. №1). По признаку сравнения, ряд также является сходящимся.

2) Пусть теперь q > 1. Возьмем такое число , что q -  будет также больше единицы. Тогда для достаточно больших n, на основании выведенного в пункте 1) данного доказательства двойного неравенства, мы будем иметь

Отсюда aN < aN+1 < aN+2. Следовательно члены ряда возрастают при увеличении их номера, не выполняется необходимый признак сходимости. Поэтому рядрасходится. Теорема полностью доказана.

Если q = 1, то нельзя определить характер сходимости ряда. Например, ряд сходится, а рядрасходится.

Знакочередующиеся ряды. Признак сходимости Лейбница. Понятие об абсолютно и условно сходящихся рядах

Знакочередующиеся ряды. Признак сходимости Лейбница. Знакочередующийся ряд – ряд, у которого любые рядом стоящие члены имеют противоположные знаки.

Признак сходимости Лейбница: если абсолютные величины членов знакочередующегося ряда монотонно убывают при возрастании их номера и n-й член ряда при неограниченном возрастании n стремится к нулю, т.е.

,

то этот ряд сходится.

Доказательство: возьмем сумму S2m первых членов ряда и запишем ее следующим образом:

S2m = (a1 – a2) + (a3 + a4) +…+ (a2m-1 + a2m).

Так как разности, стоящие в скобках, на основании условия монотонности убывания абсолютных величин членов ряда, положительны, то

S2m  0.

Если 2m возрастает, то S2m не убывает, т.к. каждый раз прибавляются положительные или равные нулю слагаемые.

С другой стороны ту же сумму можно представить в виде:

S2m = a1 – (a2 – a3) – (a4 – a5) -…- (a2m-2 – a2m-1) – a2m.

В скобках стоят положительные числа, поэтому

S2m a1.

Следовательно, S2m, будучи монотонно возрастающей (точнее, не убывающей) и ограниченной последовательностью, имеет при m   конечный предел S:

.

Но очевидно, что

S2m+1 = S2m + а2m+1.

На основании условия о стремлении n-го члена к нулю, имеем также

.

Таким образом, получаем

.

Мы получили, что при неограниченном возрастании n частные суммы Sn стремятся к одному и тому же пределу S, независимо от того, будет ли n четное или нечетное. Поэтому ряд сходится.

Понятие об абсолютно и условно сходящихся рядах. Ряд, состоящий из членов разных знаков, называется знакопеременным. Знакопеременный ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов. Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Теорема: если для знакопеременного ряда сходится ряд, составленный их абсолютных величин его членов, то данный ряд также сходится.

Доказательство: рассмотрим вспомогательный ряд

Так как 1) 0 и 2) рядв силу заданной по условию сходимости рядатакже сходится, то на основании признака сравнения и рассматриваемый вспомогательный ряд сходится. Поэтому наш рядпредставляет собой разность двух сходящихся рядов

=

и, следовательно, сходится, ч. т. д. Обратное утверждение не верно.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при и расходится при.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1: ряд сходится по признаку Лейбница (см. Признак Лейбница.).

При х = -1: ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд сходится приx = x1 , то он сходится и притом абсолютно для всех .

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k- некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x<x1 численные величины членов нашего ряда будут меньше ( во всяком случае не больше ) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд сходится, а значит рядсходится абсолютно.

Таким образом, если степенной ряд сходится в точкех1, то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х1 ряд расходится, то он расходится для всех .

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что ряд абсолютно сходится, а при всехряд расходится. При этом числоR называется радиусом сходимости. Интервал (-R, R) называется интервалом сходимости.

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости .

Следовательно, данный ряд сходится прилюбом значении х. Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд сходится для положительного значениях=х1 , то он сходится равномерно в любом промежутке внутри .

Действия со степенными рядами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]