Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические методы и модели в экономике.doc
Скачиваний:
113
Добавлен:
08.03.2016
Размер:
8.1 Mб
Скачать

1.1.6. Экономические приме­ры производственной деятельности фирм.

Пусть z количество продукции, выпущенной некоторой фир­мой; х, у – затраты ресурсов двух видов; z=Q(x,у) – дифферен­цируемая функция, устанавливающая связь х, у и z. Предполо­жим, что величины х, у, z заданы в натуральных единицах, и рx, рy, рz соответствующие этим единицам постоянные цены. Тогда выручка (валовой доход) будет R(x, у) =рzQ(x, у), а функция при­были запишется следующим образом:

(x,y)= R(x, у) – рx x – рy y. (1.1.15)

Пусть z* – оптимальный (с точки зрения прибыли) выпуск продукции; х*, у* – соответствующие этому оптимальному количеству затраты ресурсов. Тогда точка М(х*,у*) является точкой локального максимума функ­ции (х, у). Согласно необходимому признаку локального экстремума, в точке М обращаются в нуль частные производные первого порядка:

x(М)= Rx(М) – рx = 0, у(М) = Rу(М) – ру = 0,

или Rx(М) = рx, Rx(М) = рx.

Вывод: в точке локального максимума прибыли предель­ная выручка от каждого ресурса совпадает с его ценой. Этот вывод сохраняется и в более общем случае, когда цена рz зависит от объема выручки: рzz(Q).

Рассмотрим теперь фирму-монополию, которая продает свою продукцию на двух независимых рынках. Пусть рi, qi соответ­ственно цена и количество продукции, проданной монополией на i-м рынке (i =1, 2). Из независимости рынков вытекает, что цена р1 не зависит от q2, т.е. р1 = р1(q1). Аналогично р2=p2(q2). Пусть С(q) дифференцируемая функция издержек. Тогда функция при­были имеет вид: = р1q1 + р2q2 –С(q1+ q2).

В точке локального максимума прибыли имеем

Отсюда получаем отношения цен:

(1.1.16)

Так как рынки по предложению независимы, то, исполь­зуя свойства эластичности функции одной переменной, имеем

Пример 1.1.9. На сколько процентов цена на втором из двух независимых рынков выше, если эластичность спроса на первом рынке (2), а на втором – (1,5)?

Решение. Используя формулу (1.1.16), находим

Следовательно, на втором рынке цена на 50% больше.

1.1.7. Практический блок

Пример 1. Пусть в результате корреляционно-регрессионного анализа (см. дисциплину «Эконометрика») получены следующие зависимости себестоимости продукции (у) от определяющих факторов (табл. 1.1.1.):

Таблица 1.1.1.

Объем производства (х1)

у(х1)=0,62+58,74∙(1/х1) (гипербола)

2,64

Трудоемкость единицы продукции (х2)

у(х2)=9,3+9,83∙х2 (линейная функция)

1,38

Оптовая цена за 1т. энергоносителя (х3)

у(х3)=11,75+х31,6281 (степенная функция)

1,503

Доля прибыли, изымаемая государством (х4)

у(х4)=14,87∙1,016х4 (показательная функция)

26,3

Тогда получаем:

  1. для гиперболы у=b+a/x

  1. для линейной функции у=b+ax

  1. для степенной функции у=bxа

  1. для показательной функции у=bах

Из примера видно, что в наибольшей степени себестоимость зависит от оптовой цены за 1т. энергоносителя (1.63), затем от объемов производства (-0.973, т.е. с ростом объемов производства на 1% себестоимость падает почти на 1%).

Пример 2. При заданном бюджете М и ценах факторов производства rL и rK фирма работает по технологии, отображаемой функцией Q = LαKβ.

1. При каких объемах труда и капитала объем выпуска фирмы будет максимальным?

2. Как изменится капиталовооруженность труда, если:

а бюджет фирмы возрастет в 1,5 раза;

б цена труда возрастет в 1,5 раза?

Решение.

1. Из условия равновесия фирмы следует, что

В соответствии с бюджетным ограничением

М= rLL+ rKK=rLL+ rK

Отсюда максимальныe объемы труда и капитала будут:

2а. Из условия равновесия фирмы следует, что капиталовооруженность труда не зависит от бюджета фирмы.

2б. Капиталовооруженность труда возрастет в 1,5 раза.

Пример 3. Продукция производится по технологии, отображаемой функцией Q = L0,25 K0,5. Цены факторов производства равны: rL = 1; rK = 3.

Определить минимум средних затрат в коротком периоде при использовании следующих объемов капитала: K = 10; 15; 20. Построить функции АС для каждого из указанных объемов капитала.

Решение.

При заданной технологии L =Q4/K2. Поэтому суммарные издержки TC=1∙Q4/K2 +3K, откуда следует, что средние затраты будут равны

AC= Q3/K2 +3K/Q.

Минимум АС определяется из условия

AC'=

При K=10 АСmin =7,11; при K=15 АСmin=7,87; при K = 20 АСmin = 8,46.

Функции АС для каждого из указанных объемов капитала определяются по формулам:

АС10 = Q3/100 +3K/10, АС15 = Q3/225 +K/5, АС20 = Q3/400 +3K/20.

Графики этих функций предлагается построить самостоятельно.

Пример 4. Бюджет потребителя 120 ден. ед., а его функция полезности

U= .

Продукт А производится по технологии, отображаемой функцией QA=, а продукт ВQB=. Факторы производства фирмы покупают по неизменным ценам rL = 2; rK = 8.

Какую максимальную полезность в этих условиях может достичь потребитель?

Решение.

Воспользуемся вторым законом Госсена (1.1.9). При заданной функции полезности получим =0.5U/QA, =0.25U/QB и 0.5QB/0,25QA= PA /PВ, бюджетное ограничение QAPA + QВPВ =120. Откуда функции спроса индивида на блага получают следующий вид: =80/PA; =40/PB.

При заданной технологии и ценах факторов производства фирма А имеет а в соответствии с условием равновесия фирмы 8KA = 2LA → KA = 0,25LA.

Из этих двух уравнений находим, что для производства продукции с минимальными затратами фирма А должна использовать LA = 2и KA = 0,5. При этом общие затраты равны TCA = 2∙2+ 8∙0,5= 8; предельные затратыMCA = 16QA = PA, откуда =PA/16, а фирма В имеет:

также KВ = 0,25LВ. Из этих двух уравнений находим, что для производства продукции с минимальными затратами фирма В должна использовать LВ = 2и KВ = 0,5. При этом общие затраты равны TCВ = 2∙2+ 8∙0,5= 8QB; предельные затраты MCB = 8 = PB.

Равновесие объемов спроса и предложения блага А достигается при

80/PA=PA/16 →PA =35,78; QA =2,236.

Благо В предлагается по неизменной цене РВ = 8, в этом случае индивид купит QВ = 40/8 = 5. Следовательно, потребитель может достичь максимальной полезности U = 2,2360,5 ∙50,25 = 2,236.