Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика вся )))).doc
Скачиваний:
177
Добавлен:
13.03.2016
Размер:
2.4 Mб
Скачать

1) Механическое движение  и его виды

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся.

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь

2) основные кенематические характеристики движения матереальной точки……..

При поступательном движении тела все точки тела движутся одинаково, и, вместо того чтобы рассматривать движение каждой точки тела, можно рассматривать движение только одной его точки.

Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение.

Линию, по которой движется материальная точка в пространстве, называют траекторией.

Перемещением материальной точки за некоторый промежуток времени называется вектор перемещения ∆r=r-r0, направленный от положения точки в начальный момент времени к ее положению в конечный момент.

Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета. Вектор ускорения характеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета. 

3)расчет пути и скорости при раномерном и раноускоренном движении

Равноме́рное движе́ние — механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние. Равномерное движениематериальной точки — это движение, при котором величина скорости точки остаётся неизменной. Расстояние, пройденное точкой за время , задаётся в этом случае формулой 

Равноускоренное движение — движение, при котором ненулевой вектор ускорения остаётся неизменным по модулю и направлению

4)нормальное, тангельсальное и …. ускорение тела определение

Тангенциальное ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения . Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений

5)Вращательное движение материальной точки. Кинематические характеристики

Враща́тельное движе́ние — вид механического движения. При вращательном движении материальной точки она описывает окружность. При вращательном движении абсолютно твёрдого тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинематические характеристики;

Частота вращения — число оборотов в единицу времени

Период вращения — время одного полного оборота. Период вращения  и его частота  связаны соотношением .

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

6)основные динамические характеристики движения материальной точки сила масса импульс

 Сила — векторная величина, выражающая внешнее воздействие на материальное тело.

  Масса тела - есть мера инертности объекта, она характеризует способность тела к изменению состояния движения под действием внешних сил 

 Импульс тела – величина равная ;

Физический смысл импульса становится очевидным, если уравнение проинтегрировать на конечном интервале времени от 0 до t:      

7)силы изучаемые в механике

Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации.

Тре́ние — процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде.

Сила, с которой тела притягиваются к Земле вследствие гравитационного взаимодействия

СИЛА ТЯЖЕСТИ,  действующая на любое тело, находящееся вблизи земной поверхности, и определяемая как притяжения Земли

сила реакции опоры…………

вес тела Масса тела измеряется в килограммах…………..

8)закон ньютона их 3

Закон инерцииИнерция — это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным.

Второй закон…. В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

3 закон……Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению

9) Теорема Гюйгенса — Штейнера

Момент инерции материальной точки относительно некоторой оси равен произведению ее массы на квадрат расстояния от точки до этой оси. J=m умножить на R квадрат. Момент инерциитела есть сумма моментов инерции материальных точек, составляющих это тело.

 момент инерции  тела относительно произвольной оси равен сумме момента инерции этого тела  относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела  на квадрат расстояния  между осями:

10)момент силы момент импульса

Момент силы — векторнаяфизическая величина, равная векторному произведению радиус-вектора на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Моме́нт и́мпульса  характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

11)основной закон динамики вращательного движения

Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.

12)кинетическая и потонциальная энергия..Кинетическая энергия вращающегося тела

Кинетическая знергия механизма - это энергия механического движения данного механизма. Потенциальная энергия - механическая энергия системы механизмов, которая определяет их взаимодействие и их взаимное расположение

При вращении абсолютно твёрдого тела вокруг неподвижной оси его кинетическая энергия равна половине произведения момента инерции относительно оси вращения на квадрат угловой скорости.

Полная механическая энергия вводится как сумма потенциальной и кинетической.

13)Замкнутая система.Закон сохронения энергии

Замкнутая система - это система, на которую внешние силы не действуют.

Закон сохронения энергии При переходе энергии от одного тела к другому энергия сохраняется

14) Закон сохронения энергии для падающего тела

15)удар упругий и неупругий.

Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел

Абсолю́тно неупру́гий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.

16)работа и мощность силы. работа переменной силы?

Работа есть физическая величина, численно равная произведению силы на перемещение в направлении действия этой силы и ей же вызванное. 

мощность силы Это работа этой силы поделенная на время, за которое была совершена работа

17)Закон сохронения импульса. Закон сохронения импульса для абсолютно упругого и неупругогоударов

Закон сохронения импульса - если сумма внешних сил, действующих на тела системы, равна нулю, то импульс системы сохраняется.

Упругий удар - удар, при котором соударившеся тела отскакивают друг от друга (?) Абсолютно упругий удар - удар, при котором соударившеся тела отскакивают друг от друга, и сумма их импульсов до и после удара неизменна (при котором кинетическая энергия сохраняется) Неупругий удар - удар, при котором соударившеся тела слипаются и движутся вместе (?) Абсолютно неупругий удар - удар, при котором соударившеся тела слипаются и движутся вместе, и сумма их импульсов до удара равна импульсу единого тела после удара (тела начинают двигаться с одинаковыми скоростями).

18)Закон сохранения момента импульса

закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени. 

19)колебательное движение. Характеристи колебательного движеня. Уравнения горманичного колебания

Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. 

  • Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы,  (м)

  • Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание),  (с)

  • Частота — число колебаний в единицу времени,

Гармонические колебания — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону.

или

,

20.Скорость и ускорение при колебаниях.Энергия тела при гармоническом колебании.

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.

Гармонические Колебания

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

где wt - величина под знаком косинуса или синуса; w- коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

21.Идеальный газ.Основные положения молекулярно-кинетической теории.Термодинамические параметры сиситемы.Количество вещества.Число Авогадро.

Идеальный газ — математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём молекул газа пренебрежимо мал; 3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги; 4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

Диффузия

Броуновское движение

Изменение агрегатных состояний вещества

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

Параметры состояния, термодинамические параметры — физические величины, характеризующие состояние термодинамической системы: температура, давление, удельный объём, намагниченность, электрическая поляризация и др. Различают экстенсивные параметры состояния, пропорциональные массе системы:

объём,

внутренняя энергия,

энтропия,

энтальпия,

энергия Гиббса,

энергия Гельмгольца (свободная энергия),

и интенсивные параметры состояния, не зависящие от массы системы:

давление,

температура,

концентрация,

магнитная индукция и др.

Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы, молекулы, ионы, электроны или любые другие частицы). Единица измерения количества вещества в Международной системе единиц (СИ) — моль.

Число́ Авога́дро, конста́нта Авогадро, постоянная Авогадро — физическая величина, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества. Определяется как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как NA, реже как L.

22.Газовы е законы.Закон Дальтона,закон Авогадро.Изохорный,изобарный и изотермический процессы.

1. Закон Авогадро. В одинаковом объеме любого газа при одинаковой температуре и давлении содержится одинаковое количество молекул, т.е.

m/M=const при P,V,T=const для любого газа.

2. Закон Бойля-Мариотта. При постоянной массе газа и постоянной температуре давление газа обратно пропорционально занимаемому им объему, т.е.

Р•V= const при Т, m=const

3. Закон Гей-Люссака. При постоянных массе газа и давлении объем, занимаемый газом, прямо пропорционален его температуре, то есть

v

— = const при P, m=const

4. Закон Шарля. При постоянных массе газа и его объеме давление газа прямо пропорционально температуре, то есть

P/T=const при V, m=const

Согласно закону Авогадро различные газы, взятые в количестве 1 моль, имеют одинаковые объемы при одинаковых давлениях р и температурах t, так как число молекул в них одно и то же. При нормальных условиях, т. е. при температуре О °С и атмосферном давлении 101 325 Па, этот объем, как показывают измерения, равен

Закон Дальтона

Чаще имеют дело не с чистым газом — кислородом, водородом и т. д., а со смесью газов. Атмосферный воздух, в частности, представляет собой смесь азота, кислорода и многих других газов. Каждый из газов смеси вносит свой «вклад» в суммарное давление на стенки сосуда. Давление, которое имел бы каждый из газов, составляющих смесь, если удалить из сосуда остальные газы, называют парциальным (т. е. частным) давлением.

Простейшее предположение, которое можно сделать, состоит в том, что давление смеси газов р равно сумме парциальных давлений всех газов р1, р2, р3 ...:

Изобарный процесс (др.-греч. ισος, isos — «одинаковый» +βαρος, baros — «вес») — процесс изменения состояния термодинамической системы при постоянном давлении (P=const)V\T=const

Изохорный процесс (от греч. хора — занимаемое место) — процесс изменения состояния термодинамической системы при постоянном объёме (V=const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

Изотермический процесс (от греч. «термос» — тёплый, горячий) — процесс изменения состояния термодинамической системы при постоянной температуре (T=const)(PV=const). Изотермический процесс описывается законом Бойля — Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

Изоэнтропийный процесс — процесс изменения состояния термодинамической системы при постоянной энтропии (S=const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

где лямбда— показатель адиабаты, определяемый типом газа.

23.Основные уравнения млекулярно-кинетической теории.

24.Уравнение Менделеева-Клапейрона.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

25.Кинематические степени свободы молекул.Энергия движения молекулы.Энергия поступательного и вращательного движения молекулы.

Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.

Также число степеней свободы равно полному числу независимых уравнений второго порядка (таких, как уравнения Лагранжа) или половине числа уравнений первого порядка (таких, как канонические уравнения Гамильтона), полностью описывающих[1] динамику системы.

Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением.

Основные кинематические характеристики вращательного движения тела — его угловая скорость (лямбда) и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения.

26.Внутренняя энергия идеального газа.Работа газа и теплота.Способы изменения внутренней энергии.

внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул.

Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой[1]. Теплота — это одна из основных термодинамических величин. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.

Внутренняя энергия тела зависит от средней кинетической энергии его молекул, а эта энергия, в свою очередь, зависит от температуры. Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию.При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается.

27.Первое начало термодинамики.Применение первого начала термодинамики для изопроцессов.

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Среди равновесных процессов, которые происходят с термодинамическими системами, отдельно рассматриваются изопроцессы, при которых один из основных параметров состояния остается постоянным.

28.Теплоёмкость идеального газа,молярная тепоёмкость,удельная теплоёмкость.

Теплоёмкость идеального газа — отношение количества теплоты, сообщённого газу, к изменению температуры δТ, которое при этом произошло.

Молярная теплоёмкость (Сμ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

29.Теплоёмкость при постоянном давлении и при постоянном объёме.

При сообщении телу некоторого количества теплоты изменяется его температура (за исключением агрегатных превращений и вообще изотермических процессов). Характеристиками такого изменения являются различные теплоемкости: теплоемкость тела , удельная теплоемкость вещества c, молярная теплоемкость C.

30.Работа газа при изопроцессах.

Работа при изобарном расширении газа. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа.

Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l (рис. 106), то работа A', совершенная газом, равна

где p — давление газа, — изменение его объема.

Работа при изотермическом расширении газа. Сравнивая площади фигур под участками изотермы и изобары (рис. 109), можно сделать вывод, что расширение газа от объема V1 до объема V2 при одинаковом начальном значении давления газа сопровождается в случае изобарного расширения совершением большей работы.

Адиабатный процесс. Кроме изобарного, изохорного и изотермического процессов, в термодинамике часто рассматриваются адиабатные процессы.

Адиабатным процессом называется процесс, происходящий в термодинамической системе при отсутствии теплообмена с окружающими телами, т. е. при условии Q = 0.

Отсутствие теплообмена с окружающей средой может быть обеспечено хорошей теплоизоляцией газа. Быстрые процессы расширения или сжатия газа могут быть близкими к адиабатному и при отсутствии теплоизоляции, если время, за которое происходит изменение объема газа, значительно меньше времени, необходимого для установления теплового равновесия газа с окружающими телами.

Примерами адиабатных процессов могут служить процессы сжатия воздуха в цилиндре воздушного огнива, в цилиндре двигателя внутреннего сгорания. В соответствии с первым законом термодинамики, при адиабатном сжатии изменение внутренней энергии газа равно работе внешних сил А:

Так как работа внешних сил при сжатии положительна, внутренняя энергия газа при адиабатном сжатии увеличивается, его температура повышается.

При адиабатном расширении газ совершает работу A' за счет уменьшения своей внутренней энергии:

31)адиабатический процесс. Показатель адиабаты . уравнение Пуассона

АДИАБАТИЧЕСКИЙ ПРОЦЕСС (адиабатный процесс) - термодинамич. процесс, происходящий в системе без теплообмена с окружающей средой  , т. е. в адиабатически изолир. системе, состояние к-рой можно изменить только путём изменения внеш. параметров. Понятие адиабатич. изоляции является идеализацией теплоизолирующих оболочек или сосудов Дьюара (адиабатные оболочки). Изменение темп-ры внеш. тел не оказывает влияния на адиабатически изолир. системы, а их энергия U может изменяться только за счёт работы, совершаемой системой (или над ней). Согласно первому началу термодинамики, при обратимом А. п. для однородной системы , где V - объём системы, Р - давление, а в общем случае , где  - внеш. параметры, - термодинамич. силы. Согласно второму началу термодинамики, при обратимом А. п. энтропия постоянна, , а при необратимом - возрастает.

Очень быстрые процессы, при к-рых не успевает произойти теплообмен с окружающей средой, напр. при распространении звука, можно рассматривать как А. п. Энтропия каждого малого элемента жидкости при его движении со скоростью u остаётся постоянной, поэтому полная производная энтропии s, отнесённой к единице массы, равна нулю,(условие адиабатичности). Простым примером А. п. является сжатие (или расширение) газа в теплоизолир. цилиндре с теплоизолир. поршнем: при сжатии темп-pa возрастает, при расширении - убывает. Др. примером А. п. может служить адиабатич. размагничивание, к-рое используют в методе магнитного охлаждения. Обратимый А. п., наз. также изоэнтропийным, изображается на диаграмме состояния адиабатой (изоэнтропой).

Показатель адиабаты (иногда называемый коэффициентом Пуассона) — отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения. Обозначается греческой буквой  (гамма) или  (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква [1].

Уравнение:

,

где

 — теплоёмкость газа,

 — удельная теплоёмкость (отношение теплоёмкости к единице массы) газа,

индексы  и  обозначают условие постоянства давления или постоянства объёма, соответственно.

ПУАССОНА УРАВНЕНИЕ - неоднородное дифференц. ур-ние в частных производных

где D - Лапласа оператор , Краевые

задачи для П. у. сводятся к соответствующим задачам Лапласа уравненияподстановкой

где v удовлетворяет ур-нию Лапласа  a V - фундам. решение П. у. в области G:

(логарифмич. потенциал);

(ньютонов потенциал). Здесь- площадь поверхности единичной сферы в n-мерном евклидовом пространстве, Г - гамма-функция (см. Эйлера интегралы).

П. у. фигурирует в обширном круге физ. задач. Ему удовлетворяют: потенциалы ньютоновых (кулоновых) сил, порождённых массами (зарядами), распределёнными в области G с плотностью  потенциал скоростей идеальной несжимаемой жидкости; характеристики стационарных процессов теплопроводности и диффузии. П. у. возникает также в стационарных задачах теории упругости.

32)применение первого начала термодинамики для адиабатического процесса.

 Применение первого начала к изопроцессам: адиабатический процесс.

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) .

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU,

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим температу­ру Т:

Разделив переменные и учитывая, что Срv =g , найдем   dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.     или       p1vg1 = p2vg2.

Так как состояния и 2 выбраны про­извольно, то можно записать

рVg=const.

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

 

Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями.

 

33)теплоперенос .диффузия

Теплоперенос, иначе — перенос теплоты от тела к телу, от объекта к объекту, от точки к точке занимает особое место среди явлений и процессов переноса.

Во-первых, он широко распространен в химической технологии (в тепловых процессах, во многих процессах разделения, в собственно химических процессах), так что устанавливаемые в этой и следующих главах понятия и закономерности, а также полученные в них соотношения будут прямо использованы при изучении ряда последующих глав (выпаривание, дистилляция и ректификация, сушка и др.) и учебных дисциплин (АСУ ТП, спецтехнологии и т.д.). Этими понятиями, закономерностями, соотношениями очень часто пользуются исследователи, проектировщики, производственники.

Во-вторых, несмотря на множество еще не разрешенных проблем, описание явлений и процессов теплопереноса зача­стую проще, нежели массопереноса (во многих проявлениях проще и переноса импульса) в силу линейности значительного числа задач — из-за существенного постоянства входящих в них теплофизических величин. Поэтому подходы здесь нагляднее, легче усваиваются, а сами задачи чаще удается довести до аналитических решений.

И в-третьих, подходы и решения задач теплопереноса нередко служат основой и отправной точкой при анализе более сложных задач — переноса вещества и других субстанций.

Основные цели теплопереноса обусловлены характером техно­логического процесса. Наиболее часто они связаны со следую­щими моментами:

— подвод теплоты к системе, рабочему телу (целевому про­дукту, теплоносителю, хладоагенту) для повышения (или от­вод — для понижения) температуры либо изменения агрегатного состояния (плавления — затвердевания, кипения — конденса­ции и т.п.); здесь цель — сам теплоперенос;

Сущность самого технологического процесса, заключающегося в подводе (отводе) теплоты, иногда — в изменении агрегатного состояния; здесь без теплопереноса процесс просто невозможен;

 Выделение (поглощение) теплоты в ходе химических превращений (экзо- и эндотермические реакции), так что необходимо обеспечивать отвод и подвод теплоты реакции либо учитывать влияние накопления теплоты на изменение температуры и ход этой реакции.

Часто в осуществлении химико-технологического процесса реализуются все или несколько из этих целей.

Нередко теплопереносу сопутствует перенос вещества (из одной системы в другую, из одной фазы в другую); как правило, теплоперенос связан с переносом количества движения (импульса) — эту связь учитывают при описании процессов теплопереноса.

В наиболее распространенных случаях (далее будут рассматриваться и другие ситуации) поток теплоты передается от теп­лоносителя с высокой температурой Т к теплоносителю с низ­кой — t через теплопередающую стенку. Принципиальная схема такого теплопереноса для фрагмента теплообменного аппарата представлена на рис.Прямоугольник 63

Общая схема теплопереноса:

1 — теплопередаюшая стенка (поверхность), 2 — по­граничные пленки, 3 — области движения теплоносителей вдоль поверхности;

 Теплота (ее поток изображен левой вертикальной стрелкой) вводится в исследуемый фрагмент теплообменника с потоком горячего теплоносителя под действием постороннего побудителя (например, насоса). Далее поток теплоты через пограничную пленку, примыкающую к поверхности со стороны горячего теплоносителя, передается к границе поверхности, проходит через поверхность (стенку), затем через пограничную пленку со стороныхолодного теплоносителя (эти потоки теплоты изображены горизонтальными стрелками). Наконец, теплота выводится из исследуемого фрагмента с холодным теплоносителем (правая вертикальная стрелка).

Происходящие в ходе переноса теплоты процессы — в целом или на отдельных стадиях — именуются по-разному. В целях большей четкости разграничения понятий в учебнике принята следующая терминология (она выдержана и для процессов массопереноса).

Теплопереносом (иначе — тепловым процессом) именуется любое явление (процесс), связанное с переносом теплоты на любой стадии или в целом.

Элементом (видом, способом) процесса теплопереноса называется стадия (акт), относящаяся к какой-либо одной составляющей теплопереноса: через пограничную пленку — теплоотдача; в твердой стенке или другой среде возможен кондуктивный перенос; теплоперенос излучением (на схеме не показан); потоковый теплоперенос с движущимся теплоносителем.

Под теплопередачей будем понимать перенос теплоты через теплопередающую поверхность (нормально к ней); для схемы на рис. 6.1 это три стадии: перенос теплоты через пограничные пленки и через стенку.

Под теплообменом будем понимать теплоперенос в целом, включающий отвод (подвод) теплоты с горячим и холодным теплоносителями; для схемы на рис. теплообмен включает пять стадий: три стадии теплопередачи и две — переноса теплоты с потоками теплоносителей.

Рассматриваются явления и процессы переноса теплоты, относящиеся к отдельным стадиям.

Основным законом передачи тепла теплопроводностью явл. закон Фурье, согласно которому кол-во тепла dQ ,передаваемое посдедством теплопроводности ч/з элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо пропорционально температурному градиенту dt/dn поверхности dF и времени dt:

dQ = - λ dt/dn dF dt                            (1)

или кол-во тепла, передаваемое ч/з единицу поверхности в единицу времени

q = Q/Ft = - λ dt/dn                             (2)

Величина q называется плотностью теплового потока.

Знак «минус», стоящий перед правой частью уравнений (1) и (2), указывает на то, что тепло перемещается в сторону падения температуры,

Коэффициент пропорциональности λ называется коэффициентом теплопроводности.

Коэффициент теплопроводности λ показывает, какое кол-во тепла проходит вследствие теплопроводности в единицу времени ч/з единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Величина λ характеризующая способность тела проводить тепло путем теплопроводности, зависит от природы в-ва, его структуры, температуры и некоторых других факторов.

Теплоперенос, иначе — перенос теплоты от тела к телу, от объекта к объекту, от точки к точке занимает особое место среди явлений и процессов переноса.

Во-первых, он широко распространен в химической технологии (в тепловых процессах, во многих процессах разделения, в собственно химических процессах), так что устанавливаемые в этой и следующих главах понятия и закономерности, а также полученные в них соотношения будут прямо использованы при изучении ряда последующих глав (выпаривание, дистилляция и ректификация, сушка и др.) и учебных дисциплин (АСУ ТП, спецтехнологии и т.д.). Этими понятиями, закономерностями, соотношениями очень часто пользуются исследователи, проектировщики, производственники.

Во-вторых, несмотря на множество еще не разрешенных проблем, описание явлений и процессов теплопереноса зача­стую проще, нежели массопереноса (во многих проявлениях проще и переноса импульса) в силу линейности значительного числа задач — из-за существенного постоянства входящих в них теплофизических величин. Поэтому подходы здесь нагляднее, легче усваиваются, а сами задачи чаще удается довести до аналитических решений.

И в-третьих, подходы и решения задач теплопереноса нередко служат основой и отправной точкой при анализе более сложных задач — переноса вещества и других субстанций.

Основные цели теплопереноса обусловлены характером техно­логического процесса. Наиболее часто они связаны со следую­щими моментами:

— подвод теплоты к системе, рабочему телу (целевому про­дукту, теплоносителю, хладоагенту) для повышения (или от­вод — для понижения) температуры либо изменения агрегатного состояния (плавления — затвердевания, кипения — конденса­ции и т.п.); здесь цель — сам теплоперенос;

Сущность самого технологического процесса, заключающегося в подводе (отводе) теплоты, иногда — в изменении агрегатного состояния; здесь без теплопереноса процесс просто невозможен;

 Выделение (поглощение) теплоты в ходе химических превращений (экзо- и эндотермические реакции), так что необходимо обеспечивать отвод и подвод теплоты реакции либо учитывать влияние накопления теплоты на изменение температуры и ход этой реакции.

Часто в осуществлении химико-технологического процесса реализуются все или несколько из этих целей.

Нередко теплопереносу сопутствует перенос вещества (из одной системы в другую, из одной фазы в другую); как правило, теплоперенос связан с переносом количества движения (импульса) — эту связь учитывают при описании процессов теплопереноса.

В наиболее распространенных случаях (далее будут рассматриваться и другие ситуации) поток теплоты передается от теп­лоносителя с высокой температурой Т к теплоносителю с низ­кой — t через теплопередающую стенку. Принципиальная схема такого теплопереноса для фрагмента теплообменного аппарата представлена на рис.Прямоугольник 65

Общая схема теплопереноса:

1 — теплопередаюшая стенка (поверхность), 2 — по­граничные пленки, 3 — области движения теплоносителей вдоль поверхности;

 Теплота (ее поток изображен левой вертикальной стрелкой) вводится в исследуемый фрагмент теплообменника с потоком горячего теплоносителя под действием постороннего побудителя (например, насоса). Далее поток теплоты через пограничную пленку, примыкающую к поверхности со стороны горячего теплоносителя, передается к границе поверхности, проходит через поверхность (стенку), затем через пограничную пленку со стороныхолодного теплоносителя (эти потоки теплоты изображены горизонтальными стрелками). Наконец, теплота выводится из исследуемого фрагмента с холодным теплоносителем (правая вертикальная стрелка).

Происходящие в ходе переноса теплоты процессы — в целом или на отдельных стадиях — именуются по-разному. В целях большей четкости разграничения понятий в учебнике принята следующая терминология (она выдержана и для процессов массопереноса).

Теплопереносом (иначе — тепловым процессом) именуется любое явление (процесс), связанное с переносом теплоты на любой стадии или в целом.

Элементом (видом, способом) процесса теплопереноса называется стадия (акт), относящаяся к какой-либо одной составляющей теплопереноса: через пограничную пленку — теплоотдача; в твердой стенке или другой среде возможен кондуктивный перенос; теплоперенос излучением (на схеме не показан); потоковый теплоперенос с движущимся теплоносителем.

Под теплопередачей будем понимать перенос теплоты через теплопередающую поверхность (нормально к ней); для схемы на рис. 6.1 это три стадии: перенос теплоты через пограничные пленки и через стенку.

Под теплообменом будем понимать теплоперенос в целом, включающий отвод (подвод) теплоты с горячим и холодным теплоносителями; для схемы на рис. теплообмен включает пять стадий: три стадии теплопередачи и две — переноса теплоты с потоками теплоносителей.

Рассматриваются явления и процессы переноса теплоты, относящиеся к отдельным стадиям.

Основным законом передачи тепла теплопроводностью явл. закон Фурье, согласно которому кол-во тепла dQ ,передаваемое посдедством теплопроводности ч/з элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо пропорционально температурному градиенту dt/dn поверхности dF и времени dt:

dQ = - λ dt/dn dF dt                            (1)

или кол-во тепла, передаваемое ч/з единицу поверхности в единицу времени

q = Q/Ft = - λ dt/dn                             (2)

Величина q называется плотностью теплового потока.

Знак «минус», стоящий перед правой частью уравнений (1) и (2), указывает на то, что тепло перемещается в сторону падения температуры,

Коэффициент пропорциональности λ называется коэффициентом теплопроводности.

Коэффициент теплопроводности λ показывает, какое кол-во тепла проходит вследствие теплопроводности в единицу времени ч/з единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Величина λ характеризующая способность тела проводить тепло путем теплопроводности, зависит от природы в-ва, его структуры, температуры и некоторых других факторов.

34)капиллярные явления

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствиесилы тяжести поверхность жидкости искривлена всегда. Под воздействием поверхностного натяжения ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешиваетсякапиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h0 уравновешивает капиллярное давление Dр. В условиях равновесия    где r1 и r2 - плотности жидкости 1 и газа 2, s12 - межфазное поверхностное натяжение, g-ускорение свободного падения, r-радиус средней кривизны поверхности мениска (1/r=1/R1+1/R2, где R1 и R2 - радиусы кривизны мениска в двух взаимно перпендикулярных плоскостях сечения). Для смачивающей жидкости r<0 и h0>0. Несмачивающая жидкость образует выпуклый мениск, капиллярное давление под к-рым положительно, что приводит к опусканию жидкости в капилляре ниже уровня свободной поверхности жидкости (h0<0). Радиус кривизны r связан с радиусом капилляра rк соотношением r=-rк/cosq, где q - краевой угол, образуемый поверхностью жидкости со стенками капилляра. Из ур-ния (1) можно получить т. н. капиллярную постоянную а - величину, характеризующую размеры системы L<а, при к-рых становятся существенными К. я.:  Для воды при темп-ре 20 °С а=0,38 см. К К. я. относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Для капиллярного впитывания важной характеристикой является его скорость v, определяемая величиной капиллярного давления и вязким сопротивлением течению жидкости в капилляре. Скорость v изменяется со временем впитывания t, и для вертикально расположенного капилляра    где h(t) - положение мениска в момент времени t (рис. 1), h - коэф. вязкости жидкости. При впитывании в горизонтальный капилляр    При v>10-3 см/с следует учитывать возможную зависимость краевого угла q от v, а в нек-рых случаях - вязкое сопротивление вытесняемого из капилляра газа (или др. жидкости). Скорость капиллярного впитывания играет существ, роль в водоснабжении растений, движении жидкости в почвах и др. пористых телах. Капиллярная пропитка - один из распространённых процессов хим. технологии. Искривление свободной поверхности жидкости под действием внеш. сил (напр., ветра, вибрации) вызывает появление и распространение капиллярных волн ("ряби" на поверхности жидкости). Самопроизвольное образование поверхностных волн - флуктуации толщины тонких слоев жидкости (струи, плёнки) - является причиной их неустойчивости по отношению к состоянию капель или капиллярного конденсата. Разность капиллярного давления, возникающая в результате разл. кривизны поверхностей менисков, может вызывать капиллярное передвижение жидкости (рис. 2).   

Для смачивающих жидкостей поток жидкости направлен к мениску с меньшим радиусом кривизны (т. е. в сторону меньшего давления). Причиной капиллярного передвижения может быть не только градиент кривизны, но и градиент поверхностного натяжения жидкости Так, градиент темп-ры приводит к разности поверхностного натяжения и, следовательно, к разности капиллярного давления в жидкости (термокапиллярное течение). Этим же объясняется движение капель жидкости и пузырьков газа в неравномерно нагретой среде: под влиянием градиента поверхностного натяжения приходит в движение поверхность пузырьков или капель. Аналогичный эффект наблюдается и при изменении s12 при адсорбции поверхностно-активных веществ (ПАВ): ПАВ снижают s12 и жидкость перемещается в том направлении, где адсорбция ПАВ на поверхности жидкости меньше (эффект Марангони - Гиббса). Искривление поверхности раздела фаз приводит к изменению величины равновесного давления пара р над ней или растворимости твёрдых тел. Так, напр., над каплями жидкости р выше, чем давление насыщ. пара ps над плоской поверхностью жидкости при той же темп-ре Т. Соответственно растворимость с мелких частиц в окружающей среде выше, чем растворимость csплоской поверхности того же вещества. Эти изменения описываются Кельвина уравнением ,полученным из условия равенства хим. потенциалов в смежных фазах в состоянии термодинамич. равновесия: 

35) электрическое поле. Закон кулона

Электрическое поле — один из двух компонентов электромагнитного поля, представляющий собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменении магнитного поля(например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля —векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Основная статья: Электромагнитная энергия

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического поля.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка[1]:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

  3. Расположение зарядов в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где  — сила, с которой заряд 1 действует на заряд 2;  — величина зарядов;  — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — );  — коэффициент пропорциональности.

36)напряженнось электрического поля.напряженность поля заряда.принцип супер электрических полей.

Напряженность электрического поля. Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E, называемая напряжённостью электрического поля.

E F / q пр.

Она определяется отношением силы F, действующей со стороны поля на точечный пробный заряд qпр, помещенный в рассматриваемую точку поля, к величине этого заряда.

Понятие «пробный заряд» предполагает, что этот заряд не участвует в создании электрического поля и так мал, что не искажает его, т. е. не вызывает перераспределения в пространстве зарядов, создающих рассматриваемое поле. В системе СИ единицей напряженности служит 1 В / м, что эквивалентно 1 Н / Кл.

Напряженность поля точечного заряда. Используя закон Кулона (1.1) найдем выражение для напряжённости электрического поля, создаваемого точечным зарядом q в однородной изотропной среде на расстоянии r от заряда:

   (1.2)

В этой формуле r – радиус-вектор, соединяющий заряды q и qпр. Из (1.2) следует, что напряжённость E поля точечного заряда q во всех точках поля направлена радиально от заряда при q > 0 и к заряду при q < 0.

Принцип суперпозиции. Напряжённость поля, создаваемого системой неподвижных точечных зарядов q1q2q3, , qn, равна векторной сумме напряжённостей электрических полей, создаваемых каждым из этих зарядов в отдельности:                                           

где ri – расстояние между зарядом qi и рассматриваемой точкой поля.

Принцип суперпозиции, позволяет рассчитывать не только напряжённость поля системы точечных зарядов, но и напряженность поля в системах, где имеет место непрерывное распределение заряда. Заряд тела можно представить как сумму элементарных точечных зарядов dq.

При этом, если заряд распределен с линейной плотностью , то dq =  dl; если заряд распределен с поверхностной плотностью , то dq = dl и dq =  dl, если заряд распределен с объёмной плотностью 

37)работа электрического поля по перемещению заряда. связя между напряженностью и потонциалом электрического поля.

Электростатическое поле - эл. поле неподвижного заряда. Fэл , действующая на заряд, перемещает его, совершая раборту. В однородном электрическом поле Fэл = qE - постоянная величина

Работа поля (эл. силы) не зависит от формы траектории и на замкнутой траектории = нулю.