Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Костяков_Основы ИТ на АТ.pdf
Скачиваний:
758
Добавлен:
14.03.2016
Размер:
7.56 Mб
Скачать

Объеминформации

=

2 КБ

=

2 ×1024

 

байт

=32 с.

 

 

 

 

 

 

 

Пропускная способность

512 бит/с

64

 

байт/с

 

 

 

 

На практике достаточно часто используют понятие «пропускная способность», которая оценивается количеством знаков, передаваемых по каналу за единицу времени. При этом в состав сообщения включаются и все служебные символы. Эта характеристика более понятна рядовому пользователю, который привык оценивать количество информации количеством знаков (или даже количеством страниц).

Различают теоретическую и реальную пропускную способность канала. Обычно теоретическая пропускная способность значительно превосходит реальную, зависящую от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Оценку реальной пропускной способности можно провести только для существующего канала связи, находящегося в определенном состоянии, в конкретное время.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации, которую оцени-

вают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. На эту характеристику влияют как аппаратура, преобразующая сообщение, так и канал связи.

Надежность коммуникационной системы определяется либо до-

лей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

1.3. Хранение информации в компьютере

Хранение информации – это процесс передачи информации во времени. Хранение информации тесно связано с обеспечением неизменности состояния материальных носителей информации, на которых она записана в виде сообщений.

За время своего существования для хранения информации человечество использовало достаточно много материальных носителей. Такими носителями в разные исторические периоды выступали устная речь, глиняные таблички, папирус, береста, камень, металл, бумага и т.д. В современном мире для хранения информации человек использует как традиционные материальные носители (бумага), так и другие, появившиеся в последнее столетие – магнитные и оптические носители. В компьютерной технике для хранения информации используются запоминающие устройства, использующие магнитный, оптический и электронный способы хранения информации.

Все современные запоминающие устройства предназначены для хра-

28

нения информации, представленной в цифровом виде. Основные операции, выполняемые запоминающими устройствами – запись, хранение и чтение информации.

1.3.1 Кодировка текстовой информации

Для представления и передачи любой информации она должна быть формализована, т.е. представлена в виде определенного набора символов (например, текстовая – из символов алфавита). Для хранения символов в памяти компьютера и на внешних носителях, а также для передачи информации по каналам связи используются специальные коды, которые представлены целыми числами – их номерами в таблице, называемой таблицей кодировки, или кодировкой. Номер символа в таблице кодировки является его кодом. Эти коды стандартизованы и определены рекомендациями ISO

(International Organization for Standardization) – Международной организа-

ции по стандартизации (МОС) и Международным консультативным комитетом по телефонии и телеграфии (МККТТ).

Существуют десятки таблиц кодировки, содержащих различные символы в разном порядке, но у подавляющего большинства из них символы с номерами 0 – 127 совпадают. В первые 128 символов входят прописные и строчные латинские буквы, цифры, знаки препинания, разделители слов (пробел и табуляция), неотображаемые управляющие символы (конец строки, конец файла и другие).

Набор из этих 128 символов сложился исторически. В компьютерах первых поколений запоминающие устройства стоили очень дорого и при их использовании стремились экономить каждый бит, поэтому изначально для представления текстов использовался семибитный набор (27 = 128) наиболее необходимых символов. Чаще всего применялся семибитный набор символов ASCII (American Standard Code For Information Interchange – Аме-

риканский стандартный код обмена информацией). Отечественным анало-

гом ASCII является кодовая таблица КОИ-7.

Со временем получили распространение восьмибитные (однобайтовые) кодовые таблицы из 256 символов (28 = 256). В них первые 128 символов из соображений совместимости сделали совпадающими с семибитным кодом ASCII, а символы с кодами 128 - 255 использовались в различных кодировках по-разному: для представления букв национальных алфавитов, для хранения математических и других специальных научно– технических символов и т.д.

В начале 90-х годов прошлого века стала активно использоваться 16разрядная (двухбайтовая) кодировка Unicode. Использование двух байтов для представления одного символа позволяет закодировать 216 = 65536 различных символов, что более чем достаточно для представления символов национальных алфавитов всех народов мира и наиболее часто используемых научных и технических символов. Таким образом, при полном перехо-

29

де на стандарт Unicode проблемы, связанные с представлением различных символов одним и тем же кодовым числом, перестанут быть актуальными.

1.3.2. Представление графической информации

Как уже отмечалось, любая формализованная информация представляется определенным набором символов или соответствующим им кодами. В зависимости от вида информации применяются различные виды кодировок.

Для графической информации существуют два основных способа представления в компьютере. Первый способ – изображение представляется в виде мозаики из небольших, одинаковых по размеру элементов. Каждый элемент мозаики окрашен в свой цвет. Если элементы сделать очень маленькими, то изображение будет восприниматься как единое. Это обусловлено особенностями человеческого зрения.

Такой способ представления изображений называется растровым. Единичный элемент мозаики называется пикселом (от PICture ELement – элемент картинки), а всю мозаику называют растром. Практически все современные мониторы и принтеры используют растровый способ создания изображений. Цифровые и обычные фотографии тоже представляют собой растровые изображения. На обычных фотоснимках роль пикселов выполняют окрашенные элементы чувствительного слоя фотобумаги. Пикселы часто называют также точками растра.

Число битов, используемых компьютером для задания цвета одного пиксела, называется цветовым разрешением, или глубиной цвета. Цветовое разрешение определяет, в какое количество цветов (или оттенков серого) можно раскрасить каждый пиксел изображения. Цветовое разрешение 1- бит/пиксел позволяет использовать только два цвета, что соответствует черно-белому изображению, 8 бит/пиксел – 256 цветов (оттенков серого); 24 бит/пиксел – более 16 миллионов цветов – это более чем достаточно для представления всех цветов, различимых человеческим глазом.

Цветовое разрешение 24 бит/пиксел используется при создании так называемых фотореалистичных изображений, то есть компьютерных изображений, неотличимых от фотографии по качеству передачи цвета и формы объектов.

Основной недостаток растрового способа хранения информации – большой объем файла.

Второй способ компьютерного представления изображений – векторная графика. Векторный формат графического изображения основан на представлении объекта в виде отрезков прямых (векторов). Для каждого из них задана пара точек – концов вектора (или точка, направление вектора и его длина) и атрибуты – цвет, толщина линии и т.п.

Векторное изображение, также как и растровое, состоит из отдельных элементов, но они имеют различную форму и размеры. Типичные эле-

30

менты векторной графики — это геометрические линии и фигуры: отрезки, дуги, круги, прямоугольники и т.д.

Фактически в векторном способе кодирования геометрические фигуры, кривые и прямые линии, составляющие рисунок, хранятся в памяти компьютера в виде математических формул и геометрических фигур (круг, эллипс и т.д.). Чтобы запомнить в векторном формате круг, следует запомнить только его радиус, координаты центра и цвет. Очевидно, что размер такого файла будет намного меньше, чем, если бы мы разбивали его на отдельные пиксели.

Сложный рисунок разбивается на простые фигуры. Каждое изображение в векторном формате состоит из множества составляющих частей, которые можно редактировать независимо друг от друга. Эти части называются объектами. Для каждого объекта в векторном файле хранятся его размеры, кривизна, местоположение в виде числовых коэффициентов. Благодаря этому они легко масштабируются без искажений и не зависят от разрешения.

Буквы могут относиться к элементам и растровой и векторной графики. Подавляющее большинство устройств вывода основаны на растровом принципе (в них изображение формируется из отдельных точек), но это не мешает использовать их для вывода векторной графики. В процессе вывода на растровое устройство векторное изображение по специальным алгоритмам переводится в растровую форму. Существуют специальные векторные устройства вывода графической информации, например перьевой графопостроитель (плоттер), способный чертить линии на бумаге в любом направлении механической «рукой», держащей перо, напоминающее обычный фломастер.

Для хранения, чтения и записи информации непосредственно в компьютере все коды приводятся к двоичной системе счисления, т.е. представляются в виде «0» и «1». Такая система позволяет использовать для хранения информации с высоким качеством самые различные носители информации.

1.3.3. Файловая система

Вся информация, хранимая в компьютерных системах, представляется в виде файлов. Файлом называется поименованная целостность совокупных данных на каком-либо носителе [24].

Каждый файл имеет имя и располагается на определенном устройстве хранения информации. В виде файлов хранятся и программы (такие файлы называются выполняемыми), и документы. Иногда в состав одного приложения или документа входят несколько файлов. Для удобства хранения и поиска файлов они объединены в папки. Синонимами термина «папка», принятого в Windows, являются слова «каталог» и «директория». Подобно файлам папки имеют свои имена. Папки могут быть вложены друг в друга,

31

образуя многоуровневую древовидную структуру.

Имя файла обычно состоит из двух частей, разделенных точкой. Часть имени файла слева от точки — это собственно имя файла. Точка и следующая за ней часть имени называется расширением файла. Расширение указывает на тип файла, то есть на то, какая информация в нем хранится. Расширение может отсутствовать, в этом случае тип файла остается неопределенным. В именах папок расширения обычно не используются. В табл. 1.3 приведены примеры наиболее распространенных расширений и соответствующих им типов файлов.

В имени файла не допускается использование служебных символов: «:» «,» «/», «\», «?», «*».

Для того, чтобы воспользоваться хранящейся в файле информацией, необходимо знать, на каком именно устройстве и в какой папке находится нужный файл. Эти сведения содержатся в полном имени файла. Полное имя файла состоит из пути к файлу и имени файла. Путь к файлу представляет собой перечень имен папок, которые нужно последовательно посетить, чтобы спуститься к файлу с самого высокого уровня дерева файлов. Начинается полное имя с места хранения файла. Оно отделяется от остального пути двоеточием – «:». Для разделения папок в пути к файлу используется, так называемый «слэш» – «\».

Примеры полного имени файла:

C:\Мои документы\Фото\Отдых\ Р1040058.jpg D:\Музыка\Хиты80-х\Иностранные\M Jackson\Give it to me.mp3

Часть операционной системы, ответственная за хранение файлов и папок, называется файловой системой. Файловая система предоставляет пользователю возможность создавать, переименовывать и удалять файлы и папки, а также просматривать содержимое папок [5].

Таблица 1.3. Принятые расширения файлов

Расширения имени файла

Тип файла

 

 

.exe; .com; .bat

Выполняемые файлы (программы)

 

 

.dll

Части выполняемых файлов

 

 

.txt; .rtf; .doc

Текстовые документы в различных фор-

матах

 

.bmp; .jpg; .png; .wmf; .tiff; .eps

Рисунки

swf; .avi; .mpg; .mpeg;.mov

Движущиеся изображения

mid; .wav; .mp3

Файлы, содержащие звуковую информа-

цию

 

xls

Электронная таблица Excel

 

 

html; .htm

web – страницы

 

 

32

Операционные системы семейства WIN 32 могут предоставлять доступ

кданным, хранимым в следующих файловых системах:

FAT (File Allocation Table) – таблица расположения файлов;

VFAT (Virtual FAT) – виртуальный FAT;

NTFS (New Technology File System) – новая технология файловой системы;

HPFS (High Perfomance File System) – высокопроизводительная файловая система;

CDFS (CD – Rom File System) – файловая система CD – Rom.

FAT – известна своими ограничениями в именовании файлов. Эта файловая система позволяет использовать в имени файла до 8 символов. Расширение имени, отделяемое от имени точкой, – до трех символов.

В FAT существует всего несколько базовых понятий. Помимо имени файла и его расширения к таким понятиям относятся полное имя файла, наименование логического устройства, на котором находится файл и подкаталог, в котором он расположен. При именовании файлов строчные и прописные буквы не различаются. Длина полного имени ограничена 66символами. Очевидно, что к основным недостаткам FAT относятся жесткие ограничения на длину имени файла и отсутствие поддержки кодировки

UNICODE.

VFAT по организации данных напоминает FAT. Используя те же структуры, что и FAT, она позволяет использовать длинные имена файлов. Имя файла может содержать до 255 символов, а полное имя – до 260 символов. VFAT позволяет сохранять не только дату создания файла, но и дату последнего доступа к нему. VFAT является базовой файловой системой

WIN 9x.

NTFS – поддерживается только для жестких дисков и обладает рядом уникальных возможностей. Например, эта система может быть полностью восстановлена после аппаратных сбоев. Помимо этого поддерживаются: разграничение доступа (security); имена файлов кодировки UNICODE; автоматическое создание имен файлов, совместимых с FAT.

HPFS так же, как и NTFS, поддерживается только для жестких дисков. Имена файлов могут содержать до 254 символов, в том числе символы, поддерживаемые в FAT. Допускается использование в именах файлов символов верхнего и нижнего регистров. Таким образом, в одном каталоге не может быть двух файлов с одинаковыми именами, в написании которых использовались символы разных регистров.

CDFS – файловая система оптических дисков в стандарте ISO 9660.

33