Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая ЦОС Барашков.docx
Скачиваний:
51
Добавлен:
16.03.2016
Размер:
527.6 Кб
Скачать

Расчёт цифровой цепи методом билинейного преобразования.

Для получения передаточной функции цифрового фильтра необходимо произвести замену , где Td - интервал дискретизации.

Примем период дискретизации:

Td=0,00019096 с

Выбрав период дискретизации, можно найти коэффициенты передаточной функции и разностного уравнения:

Код Matlab:

clc;clear;

Td=0.00019096; %Период дискретизации

A=2/3*10^3;

%Полюса аналоговой передаточной функции

p0=1000;

p1=1000/3;

u=(2/Td+p0)*(2/Td+p1);

%Коэффициенты передаточной функции цифровой цепи

b0=2*A/Td/u

b1=0

b2=-2*A/Td/u

a1=(-8/Td^2+2*p0*p1)/u

a2=(-2/Td+p0)*(-2/Td+p1)/u

b=[b0 b1 b2];

a=[1 a1 a2];

Полученные коэффициенты:

b0 = 0,0563

b1 = 0

b2 = -0,0563

a1 = -1,7640

a2 = 0,7747

Передаточная функция:

Разностное уравнение:

Найдём нули и полюса этой передаточной функции:

Код Matlab:

[q,p]=tf2zpk(b,a);

disp('Нули');

disp(q);

disp('Полюса');

disp(p);

figure(4);

zplane(b,a);

Нули:

z=-1; z=1

Полюса:

z=0,9383; z=0,8257

Рис. 15. Карта нулей и полюсов цифрового фильтра, полученного методом билинейного преобразования при Td=0,00019096 с

Получим амплитудно-частотные и фазо-частотные характеристики этого фильтра. Для этого в передаточной функции произведём замену .

Амплитудно-частотная характеристика:

Фазо-частотная характеристика:

Код Matlab:

w=logspace(1,5,10000);

Wd=(b0+b2*exp(-2*1i*w*Td))./(1+a1*exp(-1i*w*Td)+a2*exp(-2*1i*w*Td));

%Построение графиков ЛАЧХ и ЛФЧХ цифровой цепи

figure(1);

subplot(2,1,1), loglog(w,abs(Wd),'b'), grid on, xlabel('w (Rad/s)'), title('MAGNITUDE - |H(w)|');

hold on;

subplot(2,1,2), semilogx(w,180/pi*angle(Wd),'b'), grid on, xlabel('w (Rad/s)'), title('PHASE - arg [H(w)] (deg)');

hold on;

%Построение графиков ЛАЧХ аналоговой и цифровой цепи на одном полотне

figure(2);

Wa=A*1i*w./(1i*w+p0)./(1i*w+p1);

loglog(w,abs(Wd),'b');

hold on;

loglog(w,abs(Wa),'g');

hold on;

grid on; xlabel('w (Rad/s)'); title('MAGNITUDE - |H(w)|'); axis([0 10^5 10^(-2) 1]);

Рис. 16. ЛАЧХ аналогового фильтра (обозначена зелёным) и соответствующего ему цифрового фильтра, полученного методом билинейного преобразования при Td=0,00019096 с (обозначена синим)

Рис. 17. ЛАЧХ и ЛФЧХ цифрового фильтра, полученного методом билинейного преобразования при Td=0,00019096 с

Полученная АЧХ цифрового фильтра, синтезированного методом билинейного преобразования, больше соответствует АЧХ аналогового прототипа в области частот от 10 до 10^4 рад/c, чем методом Эйлера при том же периоде дискретизации.

Импульсная переходная функция цифрового фильтра может быть получена за счёт обратного Z-преобразования его передаточной функции. Мы получим её с помощью пакета Matlab.

Код Matlab:

N=0.012/Td;

n=0:(N-1);

h=impz(b,a,N);

figure(3);

title('Impulse Response h(n*Td) - impz');

hold on;

xlabel('n');

ylabel('h(n*Td)');

plot(n,h,'b');

grid on;

Рис. 18. Импульсная переходная функция цифрового фильтра, полученного методом билинейного преобразования при Td=0,00019096 с

ИПФ фильтра, полученного методом БП, несколько отличается по форме от ИПФ прототипа для начальных отсчётов.

Теперь возьмём другой период дискретизации

Td=0,00009548с

Найдём коэффициенты передаточной функции и разностного уравнения:

b0 = 0,0299

b1 = 0

b2 = -0,0299

a1 = -1,8775

a2 = 0,8804

Передаточная функция:

Разностное уравнение:

Нули:

z=-1; z=1

Полюса:

z=0,9687; z=0,9089

Рис. 19. Карта нулей и полюсов цифрового фильтра, полученного методом билинейного преобразования при Td=0,00009548 с

Получим амплитудно-частотные и фазо-частотные характеристики этого фильтра. Для этого в передаточной функции произведём замену .

Амплитудно-частотная характеристика:

Фазо-частотная характеристика:

Рис. 20. ЛАЧХ аналогового фильтра (обозначена зелёным) и соответствующего ему цифрового фильтра, полученного методом билинейного преобразования при Td=0,00009548 с (обозначена синим)

Рис. 21. ЛАЧХ и ЛФЧХ цифрового фильтра, полученного методом билинейного преобразования при Td=0,00009548 с

Импульсная переходная функция:

Рис. 22. Импульсная переходная функция цифрового фильтра, полученного методом билинейного преобразования при Td=0,00009548 с

При уменьшении периода дискретизации у фильтра, полученного методом билинейного преобразования, характеристики изменились так же, как и у фильтра, полученного методом Эйлера.