Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Olifer_V_G__Olifer_N_A_-_Kompyuternye_seti_-_2010.pdf
Скачиваний:
2398
Добавлен:
21.03.2016
Размер:
23.36 Mб
Скачать

438

Глава 13. Коммутируемые сети Ethernet

Интерфейсы группы W не являются полностью совместимыми по электрическим харак­ теристикам с интерфейсами SONET STS-192/SDH STM-64. Поэтому для соединения сетей 10G Ethernet через первичную сеть SONET/SDH у мультиплексоров первичной сети должны быть специальные 10-гигабитные интерфейсы, совместимые со спецификациями 10GBase-W. Поддержка оборудованием 10GBase-W скорости 9,95328 Гбит/с обеспечивает принципиальную возможность передачи трафика 10G Ethernet через сети SONET/SDH в кадрах STS-192/STM-64.

Физические интерфейсы, работающие в окне прозрачности Е, обеспечивают передачу данных на расстояния до 40 км. Это позволяет строить не только локальные сети, но и сети мегаполисов, что нашло отражение в поправках к исходному тексту стандарта 802.3.

В 2006 году была принята спецификация 10GBase-T, которая дает возможность исполь­ зовать знакомые администраторам локальных сетей кабели на витой паре. Правда, обяза­ тельным требованием является применение кабелей категории 6 или 6а: в первом случае максимальная длина кабеля не должна превышать 55 м, во втором —100 м, что является традиционным для локальных сетей.

Архитектура коммутаторов

Для ускорения операций коммутации сегодня во всех коммутаторах используются заказ­ ные специализированные БИС —ASIC, которые оптимизированы для выполнения основ­ ных операций коммутации. Часто в одном коммутаторе имеется несколько специализиро­ ванных БИС, каждая из которых выполняет функционально законченную часть операций.

Важную роль в построении коммутаторов играют также программируемые микросхемы FPGA (Field-Programmable Gate Array —программируемый в условиях эксплуатации массив вентилей). Эти микросхемы могут выполнять все функции, которые выполняют микросхемы ASIC, но в отличие от последних эти функции могут программироваться и перепрограммироваться производителями коммутаторов (и даже пользователями). Это свойство позволило резко удешевить процессоры портов коммутаторов, выполняющих сложные операции, например профилирование трафика, так как производитель FPGA выпускает свои микросхемы массово, а не по заказу того или иного производителя оборудо­ вания. Кроме того, применение микросхем FPGA позволяет производителям коммутаторов оперативно вносить изменения в логику работы порта при появлении новых стандартов или изменении действующих.

Помимо процессорных микросхем для успешной неблокирующей работы коммутатору нужно иметь быстродействующий узел обмена, предназначенный для передачи кадров между процессорными микросхемами портов.

В настоящее время в коммутаторах узел обмена строится на основе одной из трех схем:

коммутационная матрица;

общая шина;

разделяемая многовходовая память.

Часто эти три схемы комбинируются в одном коммутаторе.

Коммутационная матрица обеспечивает наиболее простой способ взаимодействия процес­ соров портов, и именно этот способ был реализован в первом промышленном коммутаторе локальных сетей. Однако реализация матрицы возможна только для определенного числа

Архитектура коммутаторов

439

портов, причем сложность схемы возрастает пропорционально квадрату количества портов коммутатора (рис. 13.23).

4 5 6

Рис. 13.23. Коммутационная матрица

Более детальное представление одного из возможных вариантов реализации коммутаци­ онной матрицы для восьми портов дано на рис. 13.24. Входные блоки процессоров портов на основании просмотра адресной таблицы коммутатора определяют по адресу назначе­ ния номер выходного порта. Эту информацию они добавляют к байтам исходного кадра в виде специального ярлыка —тега. Для данного примера тег представляет собой просто 3-разрядное двоичное число, соответствующее номеру выходного порта.

Входные блоки

Коммутационная матрица

Выходные блоки

процессоров портов

процессоров портов

 

Рис. 13.24. Реализация коммутационной матрицы 8 х 8 с помощьюдвоичных переключателей

Матрицасостоит из трех уровней двоичных переключателей, которые соединяют свой вход содним из двух выходов в зависимости от значения бита тега. Переключатели первого уровня управляются первым битом тега, второго —вторым, а третьего —третьим.

440

Глава 13. Коммутируемые сети Ethernet

Матрица может быть реализована и иначе, на основании комбинационных схем другого типа, но ее особенностью все равно остается технология коммутации физических каналов. Известным недостатком этой технологии является отсутствие буферизации данных внутри коммутационной матрицы —если составной канал невозможно построить из-за занятости выходного порта или промежуточного коммутационного элемента, то данные должны накапливаться в их источнике, в данном случае —во входном блоке порта, принявшего кадр. Основные достоинства таких матриц —высокая скорость коммутации и регулярная структура, которую удобно реализовывать в интегральных микросхемах. Зато после реа­ лизации матрицы N * N в составе БИС проявляется еще один ее недостаток —сложность наращивания числа коммутируемых портов.

В коммутаторах с общей шиной процессоры портов связывают высокоскоростной шиной, используемой в режиме разделения времени.

Пример такой архитектуры приведен на рис. 13.25. Чтобы шина не блокировала работу коммутатора, ее производительность должна равняться, по крайней мере, сумме произ­ водительностей всех портов коммутатора. Для модульных коммутаторов характерно то, что путем удачного подбора модулей с низкоскоростными портами можно обеспечить неблокирующий режим работы, но в то же время некоторые сочетания модулей с высоко­ скоростными портами могут приводить к структурам, у которых узким местом является общая шина.

Рис. 13.25. Архитектура коммутатора с общей шиной

Кадр должен передаваться по шине небольшими частями, по несколько байтов, чтобы передача кадров между портами происходила в псевдопараллельном режиме, не внося задержек в передачу кадра в целом. Размер такой ячейки данных определяется произво­ дителем коммутатора. Некоторые производители выбирают в качестве порции данных, переносимых по шине за одну операцию, ячейку ATM с ее полем данных в 48 байт. Такой подход облегчает трансляцию протоколов локальных сетей в протокол ATM, если коммута­ тор поддерживает эти технологии. Кроме того, небольшой размер ячейки (ее формат может быть и фирменным, так как перенос данных между портами является сугубо внутренней операцией) уменьшает задержки доступа порта к общей шине.

Архитектура коммутаторов

441

Входной блок процессора помещает в ячейку, переносимую по шине, тег, в котором указы­ вает номер порта назначения. Каждый выходной блок процессора порта содержит фильтр тегов, который выбирает теги, предназначенные данному порту.

Шина, так же как и коммутационная матрица, не может осуществлять промежуточную буферизацию, но поскольку данные кадра разбиваются на небольшие ячейки, задержек с начальным ожиданием доступности выходного порта в такой схеме нет —здесь работает принцип коммутации пакетов, а не каналов.

Разделяемая многовходовая память представляет собой третью базовую архитектуру взаимодействия портов. Пример такой архитектуры приведен на рис. 13.26.

 

Менеджер очередей

 

выходных портов

Адрес назначения

 

очередь

Разделяемая память

 

Адрес назначения

 

-> очередь

а

 

Адрес назначения

 

-> очередь

Очереди выходных портов

Рис. 13.26. Архитектура коммутаторов с разделяемой памятью

Входные блоки процессоров портов соединяются с переключаемым входом разделяемой памяти, а выходные блоки этих же процессоров —с ее переключаемым выходом. Пере­ ключением входа и выхода разделяемой памяти управляет менеджер очередей выходнгж портов. В разделяемой памяти менеджер организует несколько очередей данных, по одной для каждого выходного порта. Входные блоки процессоров передают менеджеру портов запросы на запись данных в очередь того порта, который соответствует адресу назначения кадра. Менеджер по очереди подключает вход памяти к одному из входных блоков про­ цессоров и тот переписывает часть данных кадра в очередь определенного выходного порта. Помере заполнения очередей менеджер производит также поочередное подключение вы­ хода разделяемой памяти к выходным блокам процессоров портов, и данные из очереди переписываются в выходной буфер процессора.

Применение общей буферной памяти, гибко распределяемой менеджером между от­ дельными портами, снижает требования к размеру буферной памяти процессора порта. Однако буферная память должна быть достаточно быстродействующей для поддержания необходимой скорости обмена данными между N портами коммутатора.

Комбинированные коммутаторы. У каждой из описанных архитектур есть свои достоин­ стваи недостатки, поэтому часто в сложных коммутаторах эти архитектуры применяются в комбинации друг/>другом. Пример такого комбинирования приведен на рис. 13.27.

Коммутатор состоит из модулей с фиксированным количеством портов (2-12), выпол­ ненных на основе специализированной БИС, реализующей архитектуру коммутационной матрицы. Если порты, между которыми нужно передать кадр данных, принадлежат одному модулю, то передача кадра осуществляется процессорами модуля на основе имеющейся в модуле коммутационной матрицы. Если же порты принадлежат разным модулям, то про­

442

Глава 13. Коммутируемые сети Ethernet

цессоры общаются по общей шине. В такой архитектуре передача кадров внутри модуля будет происходить быстрее, чем при межмодульной передаче, так как коммутационная ма­ трица —это наиболее быстрое, хотя и наименее масштабируемое средство взаимодействия портов. Скорость внутренней шины коммутаторов может достигать нескольких гигабит в секунду, а у наиболее мощных моделей —до нескольких десятков гигабит в секунду.

Рис. 13.27. Комбинирование архитектур коммутационной матрицы и общей шины

Конструктивное исполнение коммутаторов

На конструктивное исполнение коммутаторов большое влияние оказывает их область при­ менения. Настольные коммутаторы и коммутаторы рабочих групп чаще всего выпускаются как устройства с фиксированным количеством портов, корпоративные коммутаторы —как модульные устройства на основе шасси, а коммутаторы отделов могут иметь стековую кон­ струкцию. Такое деление не является жестким, и в качестве корпоративного коммутатора может использоваться, например, стековый коммутатор.

Коммутатор с фиксированным количеством портов —это наиболее простое конструк­ тивное исполнение, когда устройство представляет собой отдельный корпус со всеми не­ обходимыми элементами (портами, органами индикации и управления, блоком питания), и эти элементы заменять нельзя.

Настольные коммутаторы представляют собой наиболее простой тип устройств с фикси­ рованным количеством портов (рис. 13.28). Обычно все порты такого коммутатора под­ держивают одну среду передачи, общее количество портов изменяется от 4 до 48. Порты такого коммутатора являются чаще всего интерфейсами 10/100 или 10/100/1000 Мбит/с на витой паре, поддерживающими автопереговоры. Как правило, такой коммутатор не поддерживает удаленное управление по протоколу SNMP.

Коммутатор рабочей группы с фиксированным количеством портов (рис. 13.29) имеет, как правило, множество портов для подключения пользовательских компьютеров —как и у настольного коммутатора, эти порты обычно являются интерфейсами 10/100 или 10/100/1000 Мбит/с витой паре, поддерживающими автопереговоры. В нашем примере коммутатор оснащен 24 портами 10/100 Мбит/с Кроме того, такой коммутатор имеет не­ сколько магистральных портов для соединения с коммутаторами верхних уровней.

В нашем примере коммутатор имеет 4 магистральных порта, но они выполнены в особом конструктивном исполнении как слоты для установки модулей портов стандарта SFP.

Конструктивное исполнение коммутаторов

443

Дело в том, что начиная со стандарта Gigabit Ethernet, порты для работы на оптическом волокне начали выпускаться в виде отдельных модулей, устанавливаемых в специальные слоты коммуникационных устройств.. Такая конструкция позволяет легко переходить от одноготипа оптического волокна к другому, например от многомодового к одномодовому, путем замены модуля порта. Существует два популярных стандарта на конструктивное исполнение модулей портов Gigabit Ethernet и их интерфейс с самим устройством: GBIC HSFP (рис. 13.30).

Рис. 13.28. Настольный коммутатор

4 слотадля модулей

24 порта 10/100 Мбит/с

SPF 1000 Мбит/с

(RJ-45)

Рис. 13.29. Коммутатор рабочей группы с магистральными портами

Рис. 13.30. Модули QBIC (слева) и SFP (справа)

Обаэти стандарта приняты комитетом SFF (Small Form Factor committee —Комитет произ­ водителейкомпактного оборудования), который был образован в 1990 году как консорциум производителей периферийного оборудования для компьютеров, а затем расширил свои функции. Стандарты^Fp являются результатом взаимной договоренности между произво­ дителями оборудования. Модули GBIC (Gigabit Ethernet Interface Converter —конвертор интерфейса Gigabit Ethernet) появились раньше, они обладают большими размерами, чем модули SFP (Small Factor Pluggable module —устанавливаемый модуль небольшого раз­ мера), которые были стандартизованы позднее. Модули SFP называют также моделями мини-GBIC. Несмотря на то что изначально и модули GBIC, и модули SFP были задуманы

444

Глава 13. Коммутируемые сети Ethernet

как сменная часть портов Gigabit Ethernet для оптического волокна, выпускаются модули SFP и для витой пары, так как это делает слоты SFP коммутаторов (и маршрутизаторов) универсальными.

В том случае, если коммутатор рабочей группы поддерживает интерфейсы 10G Ethertnet (их нет у коммутатора на рис. 13.29), они также выполняются как слоты с устанавливае­ мыми модулями. Существует несколько стандартов таких модулей: XENPAK, XSP и SFP+ (последний вариант самый компактный). Все эти стандарты представляют собой результат взаимной договоренности между производителями оборудования.

Модульный коммутатор выполняется в виде отдельных модулей с фиксированным количеством портов, эти модули устанавливаются на общее шасси (рис. 13.31). Шасси имеет внутреннюю шину для объединения отдельных модулей в единое устройство. Для модульного коммутатора могут существовать различные типы модулей, отличающиеся количеством портов и типом поддерживаемой физической среды. Модульные коммутаторы позволяют более точно подобрать необходимую для конкретного применения конфигура­ цию коммутатора, а также гибко и с минимальными затратами реагировать на изменения конфигурации сети.

Рис. 13.31. Модульные коммутаторы на основе шасси

Ввиду ответственной работы, которую выполняют модульные коммутаторы, они снабжа­ ются модулем управления, системой терморегулирования, избыточными источниками питания и возможностью замены модулей «на лету».

Недостатком коммутатора на основе шасси является высокая начальная стоимость такого устройства для случая, когда предприятию на первом этапе создания сети нужно устано­ вить всего 1-2 модуля. Высокая стоимость шасси вызвана тем, что оно поставляется вместе со всеми общими устройствами, такими как избыточные источники питания и т. п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]