Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИМД.docx
Скачиваний:
133
Добавлен:
24.03.2016
Размер:
600.56 Кб
Скачать

5. Контрольные вопросы

1. Периоды развития морфологии.

2. Диагностические и лечебные возможности морфологических методик.

3. Виды материала, подлежащего морфологическому исследованию.

4. Методика выполнения гистологического исследования.

5. Порядок проведения цитологического исследования.

6. Диагностические возможности иммуногистохимии в морфологии.

7. Возможности применения микробиологических методов в морфологических исследованиях.

8. Методы окраски гистологических препаратов.

9. Методы окраски цитологических препаратов.

10. Показания и противопоказания к бронхоскопии.

11. Современные возможности электронной микроскопии.

12. Исследование хромосом в морфологической диагностике.

13. Значение морфологических методов исследования в клинической диагностике заболеваний.

14. Биопсия. Виды и диагностическое значение.

15. Различия в выполнении планового и срочного гистологических исследований.

Лучевая диагностика

Лучевая диагностика — наука о применении излучений для исследования строения и функций нормальных и патологически измененных органов и систем человека с целью профилактики и распознавания заболеваний.

В состав лучевой диагностики входят рентгенодиагностика, радионуклидная диагностика, ультразвуковая диагностика и магнитно-резонансная визуализация, термография, СВЧ-термометрия, магнитно-резонансная спектрометрия. Еще одно очень важное направление лучевой диагностики — интервенционная радиология: выполнение инвазивных диагностических и лечебных вмешательств под контролем лучевых исследований.

Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека.

При прохождении через тело человека пучок рентгеновского излучения ослабевает. Тело человека представляет собой неоднородную среду, поэтому в разных органах излучение поглощается в неодинаковой степени ввиду различной толщины, состава и плотности ткани. При равной толщине слоя излучение сильнее всего поглощается костной тканью, содержащей металл - кальций, почти в 2 раза меньшее количество его задерживается паренхиматозными органами, состоящими в основном из воды, и свободно проходит через газ, находящийся в легких, желудке, кишечнике. Чем сильнее исследуемый орган поглощает излучение, тем интенсивнее его тень на приемнике излучения, и наоборот, чем больше лучей пройдет через орган, тем прозрачнее будет его изображение. Таким образом, метод прекрасно подходит для исследования костей и газовых скоплений (пневмоторакса, пневмоперитонеума, раздутого кишечника, легких, газа в мягких тканях при анаэробной инфекции).

Рис 9. Газ под диафрагмой (пневмоперитонеум)

Рис 10. Уровень жидкости в абсцессе легкого

Рис 11. Газ в правой плевральной полости (пневмоторакс)

Рис 12. Жидкость в правой плевральной полости (гемоторакс)

Рис 13. Раздутые петли кишечника с уровнями жидкости

(кишечная непроходимость)

Различение мягких тканей и жидкостных образований (желчный пузырь, почки, мышцы, нераздутая кишка и т.д) рентгенологическим методом невозможно из-за отсутствия разницы в поглрщении излучения. Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее (препараты йода, сульфат бария) или, наоборот, слабее (газ), чем мягкие ткани, и тем самым создают достаточный контраст с исследуемыми органами. Эти вещества можно вводить в сосудистое русло для изучения сосудов, кровоснабжения органов, мочевыводящих путей, а можно также вводить их в просвет полых органов для изучения их структуры и функции.

Рис 14. Контрастирование мочевыводящих путей – экскреторная урография. Двухстороннее расширение лоханок и мочеточников.

Рис 15. Ретроградное контрастирование желчевыводящих путей при помощи дуоденоскопа. Конкременты в холедохе.

Рентгеноскопия - метод рентгенологического исследования, основанный на получении рентгеновского изображения на флюоресцентном экране или телевизионном экране рентгеновской установки.

Рентгеноскопия позволяет исследовать органы в процессе их функционирования, например дыхательные движения диафрагмы, сокращения сердца, перистальтику пищевода, желудка, кишечника, а также определять взаиморасположение анатомических структур, локализацию и смещаемость патологических образований. Данный метод позволяет визуализировать заполнение органов контрастным веществом в динамике. Кроме того, под контролем рентгеноскопии выполняют многие диагностические и лечебные манипуляции (пункции, катетеризацию бронхов и др.). Исследование проводят при различном положении пациента (вертикальном, горизонтальном и др.), а также при различном направлении пучка рентгеновского излучения.

Рентгеноскопию с помощью флюоресцентного экрана, обладающего малой яркостью свечения, проводят в затемненном кабинете. Для полной темновой адаптации зрения врач-рентгенолог прежде чем приступить к исследованию должен находиться в затемненном помещении не менее 15—20 мин, а после пребывания на ярком свету — до 30 мин.

Рентгеноскопия с применением телевизионной системы проводится на свету. Использование рентгенотелевизионного просвечивания значительно облегчает исследование, не требует темновой адаптации, сопровождается более низкой лучевой нагрузкой на больного и персонал, обеспечивает лучшее, чем на флюоресцентном экране, различение деталей изображения. Рентгенотелевидение позволяет также документировать ренгеноскопическое изображение с помощью записи.

Продолжительность облучения больного при рентгеноскопии должна быть максимально короткой, например при исследовании органов грудной клетки не превышать 2—4 мин, желудка — 5—6 мин. Снижение лучевой нагрузки во время рентгеноскопии достигают также путем диафрагмирования (сужения) и фильтрации пучка рентгеновского излучения.

Недостатками метода являются сравнительно высокая лучевая нагрузка на пациента и врача и низкая разрешающая способность метода.

Рентгенография - метод рентгенологического исследования, при котором получают фиксированное изображение исследуемого объекта (рентгенограмму). Преимущество рентгенографии заключается в более высоком качестве и детализации изображения, а также в возможности наблюдать по рентгенограммам за динамикой процесса. С помощью рентгенографии могут быть изучены практически все области тела человека. В одних случаях это происходит за счет естественной контрастности ряда органов и структур, вследствие чего можно получить рентгенограммы костей и суставов, сердца, легких, диафрагмы; в других случаях рентгенографию выполняют в условиях искусственного контрастирования, например при урографии, ангиографии.

Показания к рентгенографии весьма широки, но в каждом конкретном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат беременность, крайне тяжелое состояние или сильное возбуждение больного, а также острые состояния, при которых требуется экстренная хирургическая помощь (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Специальных мер подготовки обычно не требуется. Рентгенографию выполняют с помощью рентгеновских аппаратов: стационарных или переносных.

Изображение может быть получено путем прямого воздействия рентгеновского излучения, прошедшего через исследуемый объект, на фотопленку, которую затем проявляют и фиксируют. Для уменьшения лучевой нагрузки на больного, а также с целью получения более качественного изображения рентгеновское излучение преобразуют в световое, для чего используют два люминесцентных усиливающих экрана, между которыми помещают кассету с фотопленкой.

Рентгенографию обычно проводят в двух взаимно перпендикулярных проекциях. Наряду с этим широко используют дополнительные и специальные проекции — косые, аксиальные, тангенциальные и др., что дает возможность изучать невидимые или плохо видимые объекты, осматривать объект со всех сторон, что важно в случае наложения одной структуры на другую.

Снимки, охватывающие часть тела (например, грудную клетку, брюшную полость), называют обзорными. На обзорных рентгенограммах могут быть выявлены повреждения костей и суставов, перфорации полого органа, патологического скопления газа и жидкости, отложения солей кальция и др. Прицельная рентгенограмма — изображение какой-либо части исследуемого органа или структуры, небольшого патологического объекта.

Рис 16. Перелом костей голени

Рис 17. Пневмония

За счет расхождения рентгеновских лучей отображение любой структуры на рентгенограмме несколько больше ее истинного размера. Степень увеличения тем больше, чем ближе исследуемый объект к рентгеновской трубке и чем дальше он находится от пленки, это используется для получения первично увеличенной рентгенограммы. Увеличительная рентгенография может быть эффективно использована для оценки небольших изменений структуры костей, суставов, при ангиографии и др. Для получения изображения органа или структуры, близкого по размерам к истинному, тело или его часть максимально приближают к кассете, а расстояние между кассетой и рентгеновской трубкой увеличивают.

С помощью современных рентгеновских установок, оснащенных ЭВМ, возможен перевод изображения в цифровую форму. Обработка данных в памяти компьютера позволяет складывать и вычитать диагностические изображения, рассчитывать периметры и площадь объектов, их плотность, измерять фон рентгенограммы.

Особой разновидностью рентгенографии является флюорография, в основе которой лежит фотографирование рентгеновского изображения с флюоресцентного экрана или с экрана электронно-оптического преобразователя.

Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Эти индикаторы — их называют радиофармацевтическими препаратами (РФП) — вводят в организм больного, а затем с помощью различных приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. В большинстве методик предусматривается проведение инъекции РФП преимущественно в вену, реже в артерию, паренхиму органа, другие ткани. РФП применяют также перорально и путем вдыхания (ингаляция).

Показания к радионуклидному исследованию определяет лечащий врач после консультации с радиологом. Как правило, его проводят после других клинических, лабораторных и неинвазивных лучевых процедур, когда становится ясна необходимость радионуклидных данных о функции и морфологии того иди иного органа. Противопоказаний к радионуклидной диагностике нет, имеются лишь ограничения (беременность, декомпенсация жизненно-важных органов).

Радионуклидная визуализация — это создание картины пространственного распределения РФП в органах и тканях при введении его в организм пациента. Основным методом радионуклидной визуализации является гаммасцинтиграфия (или просто сцинтиграфия), которую проводят на аппарате, называемом гамма-камерой. Физиологической сущностью сцинтиграфии является органотропность РФП, т.е. способность его избирательно аккумулироваться в определенном органе — накапливаться, выделяться или проходить по нему в виде компактного радиоактивного болюса.

Каждая сцинтиграмма в той или иной степени характеризует функцию органа, так как РФП накапливается (и выделяется) преимущественно в нормальных и активно функционирующих клетках, поэтому сцинтиграмма — это функционально-анатомическое изображение. В этом уникальность радионуклидных изображений, отличающая их от получаемых при рентгенологическом и ультразвуковом исследованиях, магнитно-резонансной томографии. Отсюда вытекает и основное условие для назначения сцинтиграфии — исследуемый орган обязательно должен быть хотя бы в ограниченной степени функционально активным.

Ультразвуковая диагностика - распознавание патологических изменений органов и тканей организма с помощью ультразвука. Основана на принципе эхолокации — приеме сигналов посланных, а затем отраженных от поверхностей раздела тканевых сред, обладающих различными акустическими свойствами.

Благодаря простоте выполнения, безвредности, высокой информативности ультразвуковое исследование получило широкое распространение в клинической практике. В ряде случаев ультразвукового исследования бывает достаточно для установления диагноза (калькулезный холецистит), в других — ультразвук используется наряду с прочими (рентгенологическими, радионуклидными) методами (плеврит).

В зависимости от вида используемого ультразвукового излучателя и характера обработки отраженных сигналов различают одномерный (А- и М-методы), двухмерный (В-метод) способы анализа структур и допплерографию. А-метод предполагает регистрацию отраженных эхосигналов на экране осциллоскопа в виде пиков кривой (эхография). По расстоянию между пиками посылаемого и отраженных сигналов можно судить о глубине расположения границы раздела двух сред, т.е. расстояния до исследуемого объекта. Его используют для локации срединных структур мозга, чтобы выявить гематому в полости черепа, смещающую эти структуры. М-метод используют для одномерной регистрации движений объектов, при этом на экране осциллографа или ленте самописца фиксируются колебания отраженного эхосигнала. Его используют при изучении движущихся объектов - стенок и клапанов сердца. В-метод (ультразвуковое сканирование, сонография, ультразвуковая томография) предполагает формирование изображения из отдельных точек при сканировании движущимся ультразвуковым лучом. При этом каждая точка соответствует принятому датчиком отраженному эхосигналу, а ее место определяется глубиной расположения отражающей сигнал структуры. В современных приборах, устроенных по принципу «серой шкалы», яркость каждой точки изображения зависит от интенсивности отраженного сигнала, т.е. от акустического сопротивления тканей этого участка. Ультразвуковые волны легко распространяются в жидких средах и отражаются на границе различных слоев в зависимости от изменения акустического сопротивления среды. Чем больше акустическое сопротивление исследуемой ткани, тем интенсивнее она отражает ультразвуковые сигналы, тем светлее исследуемый участок выглядит на сканограмме. Отражение участком ткани ультразвуковых сигналов сильнее, чем в норме, определяют терминами «повышенная эхогенность», или «усиленная эхоструктура». Наибольшей эхогенностью обладают кости и конкременты желчных путей, поджелудочной железы, почек и др. Их акустическое сопротивление может быть настолько велико, что они совершенно не пропускают ультразвуковые сигналы, полностью отражая их. На сканограммах такие образования имеют белый цвет, а позади них располагается черного цвета «акустическая дорожка», или тень конкремента, — зона, в которую сигналы не поступают. Жидкость (например, заполняющая кисты), обладающая низким акустическим сопротивлением, отражает эхосигналы в небольшой степени. Такие зоны с пониженной эхогенностью хорошо различимы и выглядят на сканограммах темными. УЗИ – основной метод визуализации жидкостных образований – желчного пузыря, абсцессов, кист и др. Поскольку ткани человеческого организма (за исключением костной и легочной) содержат большое количество воды, они легко проводят ультразвуковые волны и являются хорошим объектом для исследования с помощью ультразвука. Газовая среда не проводит ультразвуковые волны. Этим объясняется малая эффективность использования ультразвука при исследовании легких.

Рис 18. Камни в желчном пузыре

Рис 19. Холецистит

Рис 20. Полость абсцесса в мягких тканях

Главным элементом ультразвукового прибора является преобразователь (датчик), который с помощью пьезоэлектрического кристалла преобразует электрический сигнал в звук высокой частоты (0,5—15 МГц). Этот же кристалл используется для приема отраженных луковых волн и их преобразования в электрические сигналы.

Минимальная разрешающая способность современных ультразвуковых приборов, при которых исследуемые объекты различаются на экране как отдельные структуры, определяется расстоянием 1—2 мм. Глубина проникновения ультразвука в ткани организма обратно пропорциональна его частоте.

Ультразвуковые исследования обычно не требуют специальной подготовки. Исследование органов брюшной полости рекомендуется производить натощак, исследование женских половых органов, предстательной железы, мочевого пузыря осуществляют при наполненном мочевом пузыре.

Методы ультразвуковой диагностики используются также при диагностических и лечебных чрескожных прицельных пункциях, что позволяет избегать повреждения жизненно важных органов.

Томография - метод послойного исследования органов человеческого тела с помощью средств лучевой диагностики. Различают методы томографии с использованием ионизирующего излучения, т.е. с облучением пациентов (рентгеновская томография, компьютерная рентгеновская и радионуклидная томография, эмиссионная компьютерная томография), и не связанные с ним (ультразвуковая и магнитно-резонансная томография). За исключением обычной рентгеновской, при всех видах томографии изображение получают с помощью встроенных в аппараты компьютеров.

Обычная рентгеновская томография — наиболее распространенный метод послойного исследования; основан на синхронном перемещении в пространстве излучателя и рентгеновской кассеты в процессе рентгеновской съемки. Томографы обеспечивают получение на пленке рентгеновского изображения только необходимого слоя. Устранение ненужных теней происходит за счет синхронного перемещения системы излучатель-кассета относительно некоторой пространственной оси и объекта исследования. На линейных томограммах удается обнаружить не видимые на обычных рентгенограммах детали анатомического строения органа или патологического процесса, которые при обычном рентгеновском исследовании скрыты вследствие суперпозиции (наложения) теневых образований.

Линейную томографию чаще применяют при заболеваниях легких, например для выявления каверн, абсцессов на фоне массивных инфильтративных или плевральных наслоений либо скрытых нормальными анатомическими структурами, например ребрами. Широко применяется линейная томография для исследования трахеи и бронхов при раке легкого, пневмонии, туберкулезе, а также для установления причины увеличения внутригрудных лимфатических узлов. Томография является важным методом в исследовании гортани. С ее помощью не только изучают структуру этого органа, но и одновременно оценивают состояние голосовых складок (связок). В урологической практике нефротомографию выполняют обычно после внутривенного введения рентгеноконтрастных веществ. Линейную томографию применяют также при исследовании околоносовых пазух, костной системы, желчных путей.

Компьютерная рентгеновская томография основана на получении послойного рентгеновского изображения органа с помощью компьютера. Просвечивание рентгеновским лучом тела пациента осуществляется вокруг его продольной оси, благодаря чему получаются поперечные «срезы». Изображение поперечного слоя исследуемого объекта на экране полутонового дисплея обеспечивается с помощью математической обработки множества рентгеновских изображении одного и того же поперечного слоя, сделанных под разными углами в плоскости слоя.

Компьютерный томограф состоит из рентгеновского излучателя, системы детектирования, регистрирующей прошедшее через исследуемый объект излучение; сканирующей установки, с помощью которой излучатель, а нередко и системы детектирования перемещаются вокруг неподвижного пациента; измерительной системы для усиления и преобразования сигналов детекторов; вычислительно-отображающего комплекса на основе ЭВМ для обработки результатов измерений и восстановления по ним изображения, а также для хранения изображений на носителях; пульта управления; системы документирования изображения в твердых копиях; стола для пациента с подвижной декой, системой управления перемещением и системой измерения координат. Высокая разрешающая способность позволяет дифференцировать структуры почти одинаковой плотности (например, органы брюшной полости и забрюшинного пространства) без дополнительного контрастирования. Для получения наиболее четкого изображения органов и патологических очагов при компьютерной томографии используют эффект усиления контрастности путем внутривенного введения рентгеноконтрастного вещества (так называемая усиленная компьютерная томография).

Компьютерная томография применяется при исследовании практически всех областей тела человека. Она дает возможность точно установить локализацию и распространенность патологического процесса, оценить результаты лечения, а также осуществлять прицельные пункции, биопсии, дренирования.

Рис 21. Компьютерная томограмма живота. Метастазы в печени.

Рис 22. Трехмерное моделирование на основе компьютерной томографии.

Специальной подготовки метод не требует, часто рекомендуют выполнять его натощак. Если в организм вводили рентгеноконтрастные вещества, не в связи с данным исследованием, необходимо дождаться их выведения.

Радионуклидная томография позволяет получить послойное изображение распределения радионуклида, находящегося в органе. По сравнению со сцинтиграфией радионуклидная томография обладает лучшей разрешающей способностью.

Позитронно-эмиссионную томографию выполняют с ультракороткоживущими радионуклидами, испускающими позитроны. Указанные радионуклиды получают в ускорителях заряженных частиц (циклотронах), устанавливаемых непосредственно в лечебном учреждении. Для двухфотонной томографии применяются особые гамма-камеры, способные регистрировать гамма-кванты, которые возникают при аннигиляции (столкновении) позитрона с электроном. Она представляет наибольший научный интерес, однако из-за высокой стоимости и сложности применения ее использование в медицинской практике ограничено.

Ультразвуковая томография — метод получения послойного изображения посредством анализа эхо-сигнала, отраженного от внутренних структур тела человека. Послойное ультразвуковое изображение получают путем развертки ультразвукового луча, в связи с чем данный метод иногда называют ультразвуковым сканированием.

Магнитно-резонансная томография (МР-томография) — метод получения изображения внутренних структур тела человека посредством использования явления ядерного магнитного резонанса. Наиболее эффективна МР-томография при исследовании головного мозга, межпозвоночных дисков, мягких тканей и органов живота и забрюшинного пространства, желчевыводящих путей.

Рис 23. Ядерно-магнитно-резонансная томограмма печени с последующим трехмерным моделированием желчевыводящих путей. Расширение желчевыводящих путей.

Общие принципы лучевой диагностики

1. всякое лучевое исследование должно быть обосновано. Главным аргументом в пользу выполнения лучевой процедуры должна быть клиническая необходимость получения дополнительной информации, без которой полный индивидуальный диагноз установить невозможно.

2. при выборе метода исследования необходимо учитывать лучевую (дозовую) нагрузку на больного. При равной информативности методов нужно отдать предпочтение тому, при котором не происходит облучения больного или оно наименее значительное.

3. при проведении лучевого исследования нужно придерживаться правила «необходимо и достаточно», избегая излишних процедур. Порядок выполнения необходимых исследований — от наиболее щадящих и необременительных к более сложным и инвазивньм (от простого к сложному). Однако не нужно забывать, что иногда приходится сразу выполнять сложные диагностические вмешательства ввиду их высокой информативности и важности для планирования лечения больного и экономии времени.

4. при организации лучевого исследования нужно учитывать экономические факторы («стоимостная эффективность методов»). Приступая к обследованию больного, врач обязан предвидеть затраты на его проведение. Стоимость некоторых лучевых исследований столь велика, что неразумное применение их может отразиться на бюджете лечебного учреждения.