Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kursovaya_po_gidromekhanike.docx
Скачиваний:
62
Добавлен:
26.03.2016
Размер:
13.49 Mб
Скачать

2 Выбор диаметров трубопроводов

2.1 Нагнетательный трубопровод

Согласно рекомендациям по выбору скоростей движения жидкости в трубопроводах [1, табл. 3, с.5], принимает среднюю скорость движения жидкости в нагнетательном трубопроводе υ’н = 4 м/с. По заданному расходу и принятой средней скорости υ’н определяем необходимый диаметр трубопровода

=Q/S = 4Q/π; Dн’ = = 1,13;= 1,13= 0,0204 м.

Согласно ГОСТу 8734-75 [1, табл.4, с.5] принимаем трубу бесшовную: диаметр проходного сечения = 25 мм; наружный диаметр= 35 мм; толщина стенки Δ = 5 мм; масса на 1 м m = 3,7 кг/м.

Фактическая средняя скорость движения жидкости в нагнетательном трубопроводе

= 4Q/π·= 4·80/3,14··1000·60 = 2,71 м/с.

2.2 Режим движения жидкости в нагнетательном трубопроводе

Режим движения жидкости в трубопроводе зависит от величины числа Рейнольдса [1, c.6; 3]

=·D/ѵ = 2,71·0,025/30·= 2256.

Согласно табл.5 [1, с.7], критическое значение числа Рейнольдса, при котором ламинарный режим движения жидкости переходит в турбулентный,

= 2000 – 2300. Поскольку<, то режим движения жидкости в нагнетательном трубопроводе – ламинальный.

2.3 Сливной трубопровод

Выбор параметров трубопровода производим аналогичным образом = 3 м/с

= 1,13= 0,0236 м,

Принимаем = 23 мм.

= 4·80/3,14··1000·60 = 3,26 м/с.

2.4 Режим движения жидкости в сливном трубопроводе

= 3,26·0,023/30·= 2496,66.

Поскольку <– режим движения жидкости в сливном трубопроводе – ламинальный.

2.5 Всасывающий трубопровод

= 1 м/с;= 1,13= 0,0406 м,

Принимаем = 40 мм.

= 4·80/3,14··1000·60 = 1,061 м/с.

2.6 Режим движения жидкости во всасывающем трубопроводе

= 1,061·0,0406/30·= 1433;<то режим – ламинарный.

3 Потери давления в нагнетательном трубопроводе

3.1 Потери давления по длине трубопровода [1, c.7; 3]

ΔP = 0,5·ρ··λ·Lн/Dн = 0,5·890··0,0322·3/0,025 = 13012 Па,

где λ – коэффициент сопротивления, зависящий от режима движения. При ламинальном режиме: = 75/= 75/2256 = 0,0332.

В результате потери давления по длине нагнетательного трубопровода

ΔP = 0,0130 МПа.

3.2 Местные потери давления в линии нагнетателя [1, c.8; 3]

= 0,5·b··· ρ = 0,5·1,1·3··890= 10778 Па;

= 0,0107 МПа.

где b – поправочный коэффициент, учитывающий возрастание ξ при малых значениях . Если<, то b = 1,1.

3.3 Суммарные потери давления в линии нагнетания

ΔPн = ΔP + ΔPм = 0,0130+0,0107 = 0,0237 МПа.

4 Потери давления в сливной линии

Потери давления в сливной линии определяем аналогично:

= 75/2496,66 = 0,03,

ΔP = 0,5·890··0,03·3/0,023 = 18492,65 Па, ΔP= 0,0184 МПа.

b = 1

= 0,5·1·12··890 = 56710 Па, ΔPм = 0,0567 МПа.

= ΔP+= 0,0184+0,0567 = 0,0751 МПа.

5 Потери давления во всасывающем трубопроводе

= 75/1433 = 0,0523,

ΔP = 0,5·890··0,0523·0,5/0,0406 = 322,44 Па, ΔP = 0,000332 МПа.

b = 1,2

= 0,5·1,2·0,5··890 = 300 Па,= 0,0003 МПа.

= 0,000322 + 0,0003 = 0,000622 МПа.

6 Общие потери давления в трубопроводах

=++= 0,0237+0,0751+0,000622 = 0,0994 МПа.

7 Параметры гидродвигателя

7.1 Частоты вращения гидродвигателя

=·= 2,0·70 = 140 мин-1.

7.2 Рабочий объём гидродвигателя [1, c.11, 12, 13]

= Q·/= 80·1000·0,9/140 = 514,28/об.

По ГОСТ 13824 – 68 [1, табл.9 с.11] принимаем рабочий объём гидродвигателя = 500/об.

7.3 Номинальный крутящий момент, развиваемый гидродвигателем

M = /·= 3,4·/70·0,92 = 527,95 Н · м.

7.4 Перепад давления в гидродвигателе

Развиваемый гидродвигателем крутящий момент зависит от перепада

давления , рабочего объёма, и механического КПД[1, c.12; 3]

(7.4.1)

где Кг– коэффициент момента и является величиной постоянной равной 159·103;

Найдем механический КПД из формулы КПД гидродвигателя:

=·, (7.4.2)

=/= 0,92/0,9 = 1,02.

Перепад давления в гидродвигателе:

= М / 159···= 527,95/159··500··1,02 = 6,51 МПа.

7.5 Коэффициент момента гидродвигателя

Момент развиваемый ГД

M = 159····=·, (7.5.1)

где Кг – коэффициент момента (момент на единицу перепада давления).

=/= 527,95/6,51 = 81,09 Н·м/МПа.

8 Параметры насоса

8.1 Частота вращения насоса

n = nд/i1 = 1500/1 = 1500 .

Передаточное число Г.П. [1, c.12]

i = n/= 1500/140 = 10,71.

8.2 Рабочий объём насоса

Производительность насоса [1, c.10;3]

, (8.2.1)

где q – рабочий объем насоса, /об.

q,=Q/n·= 80·1000/1500·0,92 = 58.

По ГОСТ 13824 – 68 [1, табл.9, с.11] принимаем q = 140 . В этом случае теоретическая прочность насоса:

Qт = q·n = 58··1500 = 87 л/мин.

Фактическая производительность насоса:

=·= 87·0,92 = 80,04 л/мин.

8.3 Перепад давления в насосе

Из чертежа перепад давления в гидродвигателе

= (Р – Δ) – Δ, (8.3.1)

Отсюда, давления на выходе из насоса:

Р = + Δ+ Δ= 6,51 + 0,0237 + 0,0751 = 6,608 МПа.

Из чертежа перепад давления в насосе:

= Р + Δ= 6,608 + 0,000622 = 6,608 МПа.

8.4 Мощность для привода насоса [1, c.11; 3]

N = 1000· (·/η·) = 1000·6,608·80,04·/60·0,83·1,0 = 10 кВт.

9 КПД Гидропривода [1, c.10; 3]

1) КПД Магистрали

=маг·маг, (9.1)

где маг – гидравлический КПД магистрали;маг – объёмный КПД магистрали.

Утечками в трубопроводе пренебрегаем и принимаем маг = 1. Тогда

=маг = Р –/Р = 6,608 – 0,0994/6,608 = 0,98.

2) КПД Гидропривода

= η··= 0,83·0,8·0,98 = 0,65.

10 Расчет гидропривода с дроссельным регулированием

Задание по форме аналогично предыдущему. Особенность –

регулирование дроссельное. Дроссель установлен на сливе, система гидропривода – «насос – силовой цилиндр».

Δ– потери давления во всасывающей магистрали (разряжение); Р – давление на выходе из насоса; Δ– потери давления в нагнетательной магистрали; Р – Δ– давление на входе в цилиндр;– давление (подпор) на входе в дроссель; Δ– потери давления на пути от СЦ до дросселя;

+ Δ– подпор на выходе из цилиндра; ΔРс – потери давления на пути от дросселя до маслобака – подпор на выходе из дросселя.

Рисунок 2 – Схема гидропривода с регулируемым дросселем в сливной магистрали.

Дополнительные исходные данные:

Т = 3,0·105 Н – усилие на штоке;

= 3,0 м/мин – скорость движения поршня;

/= 1,8 – отношения диаметра поршня гидроцилиндра к диаметру штока;

= 0,85 – механический КПД СЦ;

= 0,91 – объёмный КПД СЦ;

k = 1,3 – коэффициент соотношения между критическим моментом (усилием) и номинальным в гидроприводе с дроссель – регулятором в напорной или сливной магистрали.

Особенность в том, что нужно потери давления разделить на две части Δи Δ

Δ= Δ– Δ, (10.1)

В Δвходят местные потери Δ= 0,0567 МПа. В них входят:

1) сопротивление в фильтре; 2) выход из трубы в бак.

Эти сопротивления расположены после дросселя.

Потери по длине трубопровода пропорциональны длине. Дроссель располагаем так, что ΔP = 0,0184 МПа разделяется на две части: 0,0093 до дросселя и 0,0091 – после дросселя. Тогда Δ= 0,0093 МПа,

Δ= Δ+ 0,0091 = 0,0567 + 0,0091 = 0,0658 МПа и

Δ= Δ+ Δ= 0,0093 + 0,0658 = 0,0751 МПа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]