Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
л_одм_5.doc
Скачиваний:
37
Добавлен:
28.03.2016
Размер:
279.55 Кб
Скачать

3.38 Модель арифметики первого порядка (7) стандартна.

В соответствие с задачей 3.40, существуют модели арифметики первого порядка, которые не обладают этим свойством. Чтобы доказать существование такой модели, полезно рассмотреть следующую теорию первого порядка G. Сигнатура G получается из сигнатуры арифметики первого порядка добавлением буквы b в качестве новой объектной константы. Множество аксиом G получается из множества аксиом арифметики первого порядка добавлением формул b № 0, b № 0', b № 0'', ... в качестве новых аксиом.

3.39 G непротиворечива.

3.40 Арифметика первого порядка имеет нестандартную модель.

Существование нестандартных моделей арифметики следует из теоремы Сколема (1920), который обобщил раннюю работу Леопольда Лёвенхейма (1915). Возможность таких моделей резко контрастирует с результатом задачи 1.41. Разница связана с тем, что язык арифметики первого порядка является слишком ограниченным для выражения аксиомы индукции. ``Арифметика второго порядка'', в которой схема индукции заменяется по аксиоме (8), не имеет нестандартных моделей.

Теорема неполноты Гёделя

Пусть M – нестандартная модель арифметики первого порядка. Может случится что M ``не отличима'' от модели (7) в том смысле, что для любой замкнутой формулы F арифметики первого порядка F истинно при M тогда и только тогда, когда F истинно при (7). Но некоторые нестандартные модели не обладают этим свойством: может существовать предложение F такое, что при M предложение F истинно, а при (7) ¬F истинно. Так как и M и интерпретация (7) являются моделями арифметики первого порядка, значит ни F, ни ¬F не являются теоремами, а это означает, что арифметика первого порядка неполна. Этот факт, известный как теорема неполноты Гёделя, был доказан Куртом Гёделем в 1931 году.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]