Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.doc
Скачиваний:
23
Добавлен:
10.11.2018
Размер:
1.28 Mб
Скачать

1.3. Сущность математики, история ее развития и роль в формировании современного естествознания.

Наука не может ограничиться констатацией фактов и отдельных эмпирических законов. На определенном этапе ее развития необходим переход от чувственно-эмпирического исследования к рационально-теоретическому. На этой стадии выдвигаются гипотезы для объяснения фактов и эмпирических законов, установленных с помощью наблюдений и экспериментов. В процессе разработки и проверки гипотез приходится обращаться не только к логическим, но и к математическим методам. Поэтому естествознание тесно связано с математикой, которая, исследуя формы и отношения, встречающиеся в природе, обществе, а также в мышлении, отвлекается от содержания и исключает из допускаемых внутри нее аргументов наблюдение и эксперимент. Математику нельзя причислить к естествознанию или общественным наукам: естествознание непосредственно изучает природу, а математика изучает не сами объекты действительности, но математические объекты, которые могут иметь прообразы в действительности.

Формирование математики как самостоятельной отрасли научного знания обычно относят к античности. В это время появляются различные представления о соотношении математических образов и реальных природных объектов, следовательно, о соотношении математики и естествознания . Так, Платон считал, что понимание физического мира может быть достигнуто только с помощью математики, ибо <Бог вечно геометризует>. Для Платона математика не просто посредник между идеями и данными чувственного опыта - математический порядок он считал точным отражением самой сути реальности. Наименьшие части элемента Земли он ставил в связь с кубом, наименьшие части элемента воздуха - с октаэдром (правильным многогранником с 8 треугольными гранями, 12 ребрами, 6 вершинами, в каждой из которых сходятся 4 ребра), элементы огня - с тетраэдром (правильной треугольной пирамидой, имеющей треугольные 4 грани, 6 ребер, 4 вершины, в каждой из которых сходятся 3 ребра), элементы воды - с икосаэдром (правильным многогранником с 20 треугольными гранями, 30 ребрами, 12 вершинами, в каждой из которых сходятся 5 ребер). Не было элемента, соответствующего додекаэдру (правильному многограннику, имеющему 12 пятиугольных граней, 30 ребер, 20 вершин, в каждой из которых сходятся 3 ребра), и Платон предположил, что существует пятый элемент, который боги использовали, чтобы создать Вселенную. Он конструировал свои правильные тела из двух видов треугольников - равностороннего и равнобедренного прямоугольного. Соединяя их, он получал грани правильных тел, которые можно разложить на треугольники, а из этих треугольников построить новые правильные тела. Например, по Платону, один атом огня и два атома воздуха в сочетании дают один атом воды. С его точки зрения, треугольники нельзя считать материей, т.е. они не имеют пространственного протяжения. А при объединении треугольников в правильные тела возникает частица материи. Поэтому наименьшие частицы материи представляют собой математические формы. Аристотель, подвергая взгляды Платона сомнению, придерживался другого мнения: он считал, что математические предметы не могут существовать отдельно.

Математика интенсивно развивалась в античности. Поворотным событием для дальнейшего развития научного знания стала работа Евклида <Начала>, где впервые применялись доказательства. Эта математическая система была преподнесена как идеальная версия того, что составляло содержание реального мира. Значительно расширили математическое знание греки Александрийского периода: Аполлоний (<Конические сечения>), Гиппарх, Менелай, Птолемей, Диофант (<Арифметика>) и т.д.

В средневековой Европе главенствующую роль заняла теологическая ветвь науки, а исследование природы любыми средствами, в том числе математическими, трактовалось как предосудительное занятие. Центр научной мысли переместился в Индию, а несколько позже - в арабские страны. В Индии того времени вводятся в широкое употребление десятичная позиционная система счисления и нуль для обозначения отсутствия единиц данного разряда, зарождается алгебра. В арабской культуре сохранялись математические знания древнего мира и Индии. Конец Средневековья (XV в.) в арабских странах отмечен деятельностью Улугбека, который при своем дворе в Самарканде создал обсерваторию, собрал более 100 ученых и организовал долго остававшиеся непревзойденными астрономические наблюдения, вычисление математических таблиц и т.п.

В XVII в. начинается новый период во взаимоотношениях математики и естествознания. Многие отрасли естествознания начинают базироваться на применении экспериментально-математических методов. В результате появляется уверенность в том, что научность (истинность, достоверность) знания определяется степенью его математизации. Так, Г. Галилей утверждал, что книга природы написана на языке математики, а согласно И. Канту, в каждом знании столько истины, сколько есть математики. Логическая стройность, строго дедуктивный характер построений, общеобязательность выводов создали математике славу образца научного знания.Противоположного мнения о роли математики для раскрытия качественных особенностей придерживался великий писатель, мыслитель и естествоиспытатель И.В. Гёте, который воспринимал неживую природу и все живое (включая человека) как единое целое и придавал большое значение интуиции и опыту. Гёте считал, что световые и другие природные явления должны наблюдаться в их естественном виде, так как эксперимент и количественный анализ мало помогают в понимании подлинной их сущности: он полагал, что эта сущность познается только непосредственным опытом и интуицией. В XIX в. с резкой критикой экспериментального изучения явлений природы выступил А. Шопенгауэр. Он не только поддерживал подход Гёте, но и вообще отрицал какую-либо пользу от применения математического языка к изучению природы. Даже сами математические доказательства Шопенгауэр называл <мышеловки>, считая, что они не дают истинного представления о реальных процессах. Многие выдающиеся ученые XX в., в особенности физики, говорили о значении математики как важнейшего средства для точного выражения научной мысли. Н. Бор указывал на огромную роль математики в развитии теоретического естествознания и говорил, что математика - это не только наука, но и язык науки. Р. Фейнман отмечал, что математика - это язык плюс мышление, как бы язык и логика вместе. Однако в то же время он считал, что такой науки, как математика, не существует. Различные варианты тезиса Шопенгауэра о том, что математика не способствует, а затемняет понимание реальных явлений, характерны и для наших дней. Так, иногда противопоставляют объяснение явлений их пониманию, полагая, что количественный язык и методы математики в лучшем случае содействуют объяснению явлений неорганической природы, но не могут дать ничего ценного в понимании процессов культурно-исторической и духовной жизни. При этом понимание рассматривается как чисто интуитивная деятельность мышления, вследствие чего отрицается возможность использовать для его анализа логико-рациональные, в том числе математические, средства исследования. В настоящее время к применению количественного языка математики особенно критически настроены ученые, занимающиеся исследованием сложных биологических, психических и социальных процессов и привыкшие больше доверять опыту и интуиции, чем их математическому анализу.