Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Содержание.docx
Скачиваний:
16
Добавлен:
14.11.2018
Размер:
239.02 Кб
Скачать

Классическая механика

Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел)

  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)

  • динамику (которая рассматривает движение тел).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • Законы Ньютона

  • Лагранжев формализм

  • Гамильтонов формализм

  • Формализм Гамильтона — Якоби

Классическая механика даёт очень точные результаты, если её применение ограничено телами, скорости которых много меньше скорости света, а размеры значительно превышают размеры атомов и молекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика, а на тела, размеры которых сравнимы с атомными — квантовая механика. Квантовая теория поля рассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

  1. она намного проще в понимании и использовании, чем остальные теории

  2. в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы.

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса, в котором невозможно точно определить величину энтропии, и к ультрафиолетовой катастрофе, в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к развитию квантовой механики.

Основные понятия

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:

  • Пространство. Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).

  • Время — фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени)

  • Система отсчёта состоит из тела отсчёта (некоего тела, реального или воображаемого, относительно которого рассматривается движение механической системы) и системы координат

  • Материальная точка — объект, размерами которого в задаче можно пренебречь[1]. В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Тела ненулевого размера могут испытывать сложные движения, поскольку может меняться их внутренняя конфигурация, например, тело может вращаться или деформироваться. Тем не менее, в определённых случаях к подобным телам применимы результаты, полученные для материальных точек, если рассматривать такие тела, как совокупности большого количества взаимодействующих материальных точек. Материальные точки характеризуются несколькими параметрами:

    • Масса — мера инертности тел

    • Радиус-вектор  — вектор, проведённый из начала координат в точку расположения тела, характеризует положение тела в пространстве[1]

    • Скорость является характеристикой темпа изменения положения тела со временем, определяется как производная радиус-вектора по времени[1]

    • Ускорение — скорость (темп) изменения скорости, определяется как производная скорости по времени[1]

    • Импульс (устаревшее название — количество движения) — векторная физическая величина, равная произведению массы материальной точки на её скорость[2]

    • Кинетическая энергия — энергия движения материальной точки, определяемая как половина произведения массы тела на квадрат его скорости[3]

  • Сила — физическая величина, характеризующая степень взаимодействия тел между собой. Фактически, определением силы является второй закон Ньютона.

    • Если работа силы не зависит от вида траектории, по которой двигалось тело, а определяется только его начальным и конечным положениями, то такая сила называется потенциальной. Взаимодействие, происходящее посредством потенциальных сил, может описываться потенциальной энергией. По определению, потенциальной энергией называется функция координат тела такая, что сила, действующая на тело равна градиенту от этой функции, взятой с обратным знаком: