Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТРПП пособие Шишов.doc
Скачиваний:
131
Добавлен:
17.11.2018
Размер:
3.25 Mб
Скачать

4.3. Вероятностный подход к оценке надежности

Надежность – понятие статистическое, т. е. предполагается наличие не единичного запуска программы, некоторого (достаточно большого) количества одинаковых образцов, испытаний и т. д. Существенно также, что имеется элемент случайности. Изучению случайных явлений посвящен специальный раздел математики: теория вероятностей. Основное понятие этой теории - пространство элементарных событий (выборочное пространство, пространство исходов), на котором задается некоторая (вероятностная) мера. Случайная величина, согласно теории, есть функция, заданная на пространстве элементарных событий. Наконец, в качестве меры надежности используются некоторые характеристики случайной величины (как правило, математическое ожидание).

Рассмотрим для простоты класс программ, имеющих единственный вход и выход, т.е. не содержащих бесконечных циклов. Фазу выполнения программы от начала до завершения будем называть запуском. Все возможные результаты запуска разобьем на два класса: правильные и неправильные (ошибочные). Будем считать, что любой результат всегда можно отнести к одному из этих классов. Рассмотрим классическую вероятностную модель последовательности испытаний Бернулли. Пространство элементарных событий в этой модели содержит 2n точек, где n – число испытаний (в данном случае под испытанием подразумевается запуск программы). Каждый запуск программы имеет два исхода: правильный и неправильный. Обозначим вероятность неправильного исхода р, а вероятность правильного – (1–p). Вероятность того, что из n запусков К приведут к неправильному результату, выражается хорошо известной формулой биномиального распределения.

B(р,n,k) = C(n,k) * pk * (1–р)(n–k), (1)

где С(n,k) – число сочетаний. Вероятность р априори неизвестна, но по результатам запусков известны n и k. Величина В как функция р имеет максимум при

р = k/n. (2)

В качестве меры надежности программы можно принять величину

R = 1 – k/n = (n-k)/n, (3)

значения которой (от 0 до 1) согласуются с общепринятым смыслом термина надежность: например, если все запуски окончились с ошибочным результатом (k = n), то надежность - нулевая.

Наиболее существенное предположение в данной модели состоит в том, что запуски программы считаются независимыми. Это означает, что результаты предыдущих запусков не дают никакой информации о результатах следующего.

Следует отметить, что изготовитель программы и ее пользователь располагают разной информацией о ней. Например, изготовителю заведомо известна логика программы, так что по результатам запуска с некоторыми исходными данными он иногда может точно предсказать результаты запусков с другими исходными данными (на этом, в конечном счете, основана любая методика тестирования), и в этом смысле предположение о независимости испытаний не выполняется. Однако пользователя редко интересует устройство программы, для него важно лишь одно: выполняет ли она требуемые функции, поэтому у пользователя нет оснований считать запуски зависимыми. Если же имеется желание использовать информацию об устройстве программы при оценке ее надежности, то следует придумать какую-то более сложную вероятностную модель, которая бы ее учитывала.

Из формулы (3) следует, что оценка надежности программы растет с увеличением числа ее запусков по гиперболическому закону. Это подтверждает интуитивно ясное соображение о том, что программа тем надежнее, чем больше опыт ее эксплуатации, который зависит как от интенсивности использования программы, так и от тиража компьютера, на котором она запускается. Таким образом, надежность программ для персональных компьютеров типа IBM РС, общий тираж которых составляет в настоящее время около 100 миллионов, на несколько порядков выше аналогичных программ для специализированных процессоров (если, конечно, такие программы действительно существуют и эксплуатируются).