Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экология популяций.doc
Скачиваний:
143
Добавлен:
18.11.2018
Размер:
89.09 Кб
Скачать

3. Динамика популяции.

Популяция не может существовать без постоянных изменений, за счет которых она приспосабливается к изменяющимся условиям окружающей среды. Изменения численности организмов во времени называют динамикой популяции. Представления о росте популяций необходимы для понимания их способностей к восстановлению численности, а также для уяснения некоторых свойств динамики.

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. В таком случае скорость роста популяции будет зависеть только от величины биотического потенциала (б.п.), свойственного виду. Б. П. отражает теоретический максимум потомков от одной пары или особи за единицу времени. Б. П. выражают коэффициентом r и рассчитывают по следующей формуле:

,

где ΔN - прирост популяции;

Δt - отрезок времени, за который наблюдается прирост ΔN;

N0 - начальная численность популяции.

В природе Б. П. популяции никогда не реализуется полностью. Обычно его величина складывается как разность между рождаемостью и смертностью в популяциях:

r = в - d

где: в - число родившихся,

d - число погибших особей в популяции за один и тот же период времени.

Рост популяции и кривые роста. Если рождаемость в популяции превышает смертность, то популяция будет расти (если изменения в результате миграции незначительны). Чтобы понять закономерности роста популяций, полезно вначале рассмотреть модель, описывающую рост популяции бактерий после посева их на свежую культуральную среду. В этой новой и благоприятной среде условия для роста популяции оптимальны и наблюдается экспоненциальный рост (J-образный). Кривая такого роста называется экспоненциальной, или логарифмической (рис.1).

К

Возраст

0

Рис.1. Экспоненциальная кривая роста популяции (J - образная)

Рис.2. Логистическая кривая роста популяции (S - образная)

В конце концов, достигается такая точка, когда по нескольким причинам, в том числе из-за уменьшения пищевых ресурсов и накопления токсичных отходов метаболизма экспоненциальный рост становится невозможным. Он начинает замедляться так, что кривая роста приобретает сигмоидную (S-образную) форму и называется логистической (рис. 2).

Сигмоидная и J-образная кривые - это две модели роста популяции. При этом предполагается, что все организмы очень сходны между собой, имеют равную способность к размножению и равную вероятность погибнуть, так что скорость роста популяции в экспоненциальной фазе зависит только от ее численности и не ограничена условиями среды, которые остаются постоянными.

В природе после экспоненциальной фазы дальнейшее развитие популяции идет по логистической модели, при этом скорость роста популяции линейно снижается по мере роста численности вплоть до нуля при некотором значении К. Величину К называют биологической емкостью среды (степень способности природного или природно - антропогенного окружения обеспечивать нормальную жизнедеятельность определенному числу организмов без заметного нарушения самого окружения).

Кривые выживания. Смертность в популяциях зависит от многих причин: генетической и физиологической полноценности особей, влияния неблагоприятных физических условий среды, воздействия хищников, паразитов, болезней и т.д. На разных стадиях жизненного цикла организмов эти факторы действуют с разной силой. На практике, когда необходимо проанализировать ход смертности в популяциях, составляют таблицы выживания (демографические таблицы). Такие таблицы содержат сведения о характере распределения смертности по возрастам. На основе таблиц выживания составляют кривые выживания, которые позволяют прогнозировать в сходных условиях состояние очередных генераций (поколений).

Кривую выживания можно получить, если начать с некоторой популяции новорожденных особей и затем отмечать число выживших в зависимости от времени. По вертикальной оси обычно откладывают или абсолютное число выживших особей или их процент от исходной популяции:

Каждому виду свойственна характерная кривая выживания, форма которой отчасти зависит от смертности неполовозрелых особей. Типичные примеры приведены на рис 3.

100

50

0

Рис.3. Три типа кривых выживания

Большинство животных и растений подвержено старению, которое проявляется в снижении жизненности с возрастом после периода зрелости. Как только начинается старение, вероятность наступления смерти в определенный промежуток времени возрастает. Непосредственные причины смерти могут быть разными, но в основе их лежит уменьшение сопротивляемости организма к действию неблагоприятных факторов (например, болезням). Кривая А на рис.2 очень близка к идеальной кривой выживания для популяции, в которой старение служит главным фактором, влияющим на смертность. Примером может быть популяция человека в современной развитой стране с высоким уровнем медицинского обслуживания и рациональным питанием, где большинство людей доживает до старости. Кривая, сходная с кривой А, свойственна также однолетним культурным растениям, когда на данном поле они стареют одновременно.

Кривая типа Б характерна для популяций организмов с высокой смертностью в ранний период жизни, например, для горных овец или для популяции человека в стране, где широко распространены голод и болезни. Плавная кривая типа В может быть получена, если смертность постоянна в течение всей жизни организмов (50% за определенную единицу времени). Это может быть тогда, когда главным фактором, определяющим смертность, становится случай, причем особи гибнут до начала заметного старения. Подобная кривая характерна для популяций некоторых животных (например, гидры), не подвергающихся особой опасности в раннем возрасте. Для большинства беспозвоночных и растений тоже характерна кривая такого типа, но высокая смертность среди молодых особей приводит к тому, что начальная часть кривой спускается еще более круто.

Существуют небольшие внутривидовые различия в кривых выживания. Они могут быть обусловлены разными причинами и нередко связаны с полом. У людей, например, женщины живут несколько дольше, чем мужчины, хотя точные причины этого неизвестны.

Вычерчивая кривые выживания для различных видов, можно определять смертность для особей разного возраста и, таким образом, выяснять, в каком возрасте данный вид наиболее уязвим. Установив причины смерти в этом возрасте, можно понять, как регулируется величина популяции.