Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан вопросы и ответы.doc
Скачиваний:
137
Добавлен:
23.11.2018
Размер:
2.11 Mб
Скачать
  1. Алгебраические свойства пределов

1. Предел алгебраической суммы равен алгебраической сумме пределов, т.е. 2. Предел произведения равен произведению пределов: 3. Постоянную величину можно выносить за знак предела: 4. Предел частного равен частному пределов делимого и делителя, если предел делителя не равен нулю: 5. Предел целой положительной степени переменной величины равен той же степени предела той же переменной:

  1. Первый замечательный предел

Первый замечательный предел

Доказательство

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности (R = 1).

Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.

Очевидно, что:

(1)

(где SsectOKA — площадь сектора OKA)

(из : | LA | = tgx)

Подставляя в (1), получим:

Так как при :

Умножаем на sinx:

Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Следствия

  1. Понятие предела последовательности. Теорема существования предела последова­тельности

Постоянное число а называется пределом последовательности {xn}, если для любого сколь угодно малого положительного числа  существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству

                                                                               |xn - a| < .                                                                              (6.1)

Записывают это следующим образом:  или xn→ a.

Неравенство (6.1) равносильно двойному неравенству

                                                                           a-  < xn < a + ,                                                                             (6.2)

которое означает, что точки x n, начиная с некоторого номера n>N, лежат внутри интервала (a-, a+), т.е. попадают в какую угодно малую -окрестность точки а.

Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.

Теорема (существование предела у монотонной функции). Для того чтобы неубывающая на множестве E функция f:E R имела предел при x s, необходимо и достаточно, чтобы она была ограничена сверху, а для того чтобы она имела предел при x i необходимо и достаточно, чтобы она была ограничена снизу.

Сравнение функций.

Определение 15 (символ О). Если для функций f(x), g(x) существуют постоянные c>0, >0, такие, что |f(x)| c |g(x)| при |x-a|<, x a, то говорят, что f является ограниченной по сравнению с функцией g в окрестности точки a и пишут, что f(x) = O(g(x)) при x a.

Данное определение переносится и на случай, когда x, x.

Пример 12.

  1. Так как |1/x2|  |1/x| при |x|  1, то 1/x2 = O(1/x) при x ;

  2. 1/x = O(1/x2) при x 0 так как |1/x| 1/x2 при |x| 1.

Запись f=O(1) при x a означает, что функция f(x) ограничена в некоторой окрестности точки a.

Определение 16 (функции одного порядка). Если f=O(g) и g=O(f) при x a f и g — одного порядка при x a.

Пример 13. Функции f(x) = x(2+sin 1/x) g(x) = x x  0 являются бесконечно малыми одного порядка при x a , так как

f/g = (x(2+sin 1/x))/x = 2+sin 1/x = |2+sin 1/x|  3  f=O(g), g/f = 1/|2+sin 1/x|  1  g=O(f).

Определение 17 (эквивалентные функции). Функции f(x) и g(x) называются эквивалентными при x a, если (x): f(x) =  (x)g(x), где limx a (x) = 1.

Иначе говоря функции эквивалентны при x a, если предел их отношения при x a равен единице. Справедливы следующие соотношения, их еще называют асимптотическими равенствами:

sin x ~ x, x  0

(1)

tg x ~ x, x  0, arcsin x ~ x, x  0, arctg x~ x, x  0

ex-1~ x, x 0

ln (1+x)~ x, x 0

(2)

m-1~ mx, x 0

(3)

Следующая теорема удобна для применения на практике при вычислении пределов.

  1. Второй замечательный предел Ит(1 + -)и = е. Число е. Экспонента и натуральные логарифмы

Доказательство второго замечательного предела:

   Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где  — это целая часть x.

Отсюда следует: , поэтому

.

Если , то . Поэтому, согласно пределу , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку − x = t, тогда

.

Из двух этих случаев вытекает, что для вещественного x.   

Следствия

  1. для ,

Экспонента — показательная функция exp(x) = ex, где e — основание натуральных логарифмов (e = 2.7182818284590452...).

Обратной функцией к экспоненциальной функции является натуральный логарифм. Обозначается ln(x):

ln(x) = loge(x)