Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
олебания и волны.doc
Скачиваний:
9
Добавлен:
30.11.2018
Размер:
366.59 Кб
Скачать

Колебания струны (стержня).

В натянутой струне, закрепленной с обоих концов, при возбуждении какого-либо произвольного поперечного возмущения возникнет довольно сложное нестационарное движение. Стационарное же движение в виде стоячей волны возможно лишь при вполне определенных частотах. Это связано с тем, что на закрепленных концах струны должны выполняться определенные граничные условия: в них смещение u все время должно равняться нулю. Значит, если в струне возбуждается стоячая волна, то концы струны должны быть ее узлами. Отсюда следует, что на длине струны  должно укладываться целое число п полуволн:  = n∙λ/2. Из этого условия находим возможные длины волн:

n = 2/n, n = 1,2,...Соответствующие частоты ,

где v — фазовая скорость волны, определяемая, согласно (1.30), силой F натяжения струны и линейной плотностью ρ т. е. массой единицы ее длины.

Частоты νn называют собственными частотами струны. Частоту ν1 (n=1) называют основной частотой, остальные ν2, ν3, ... — обертонами. Гармонические колебания с частотами (1.57) называют собственными колебаниями, или гармониками. В общем случае колебания струны представляют собой суперпозицию различных гармоник (спектр).

Колебания струны примечательны тем, что в рамках классической физики возникает дискретный спектр одной из величин (частоты). Такая дискретность для классической физики является исключением, в отличие от квантовой физики.

Приведенные выше соображения относятся не только к струне, но и к стержням, закрепленным различным образом — в середине, на одном конце и т. д. Отличие заключается лишь в том, что свободный конец стержня является пучностью. Это касается как поперечных, так и продольных колебаний.

Пример. Найдем собственные частоты стержня, закрепленного на одном конце, если длина стержня , модуль Юнга материала стержня E и его плотность ρ.

Поскольку свободный конец стержня должен быть пучностью, на длине стержня установится целое число полуволн и еще четверть волны, т. е.  = nλ/2 + λ/4 = (2n + 1)λ/4. Отсюда найдем возможные значения λn, а затем, учитывая (1.26), и собственные частоты:

, n=0,1,2,...

Эффект Доплера для звуковых волн

Пусть источник, находящийся в газе или жидкости, испускает короткие импульсы с частотой ν. Если источник и приемник покоятся относительно среды, в которой распространяется волна, то частота воспринимаемых приемником импульсов будет равна частоте ν источника. Если же источник, или приемник, или оба движутся относительно среды, то частота ν', воспринимаемая приемником, вообще говоря, оказывается отличной от частоты источника: ν'  ν. Это явление называют эффектом Доплера.

Сначала рассмотрим случай, когда источник S и приемник P движутся вдоль проходящей через них прямой с постоянными скоростями u и u' соответственно (относительно среды).

Если бы двигался только источник навстречу приемнику, испуская импульсы с периодом T = 1/ν, то за это время очередной импульс пройдет относительно среды расстояние λ = vT, где v — скорость волн в среде, и пока будет испущен следующий импульс, источник «нагонит» предыдущий импульс на расстояние uT. Таким образом, расстояние между импульсами в среде станет равным λ' = vTuT (рис.), и воспринимаемая неподвижным приемником частота (число импульсов за единицу времени)

.

Если же движется и приемник (пусть тоже навстречу источнику, то импульсы относительно приемника будут иметь скорость v + u', и число воспринимаемых за единицу времени импульсов

.

Нетрудно сообразить, что при движении как источника, так и приемника в противоположных направлениях, знаки перед u' и u надо поменять на обратные. Еще раз подчеркнем, что скорости u' и u — это скорости приемника и источника относительно среды.

Как видно из приведенных рассуждений, эффект Доплера является следствием «уплотнения» (или разряжения) импульсов, обусловленным движением источника и приемника.

Формулу целесообразнее записать в иной форме, более общей и более простой для запоминания и использования:

u'x и ux – проекции скоростей приемника и источника на ось X, проходящую через них и положительное направление которой совпадает с направлением распространения импульсов, т. е. от источника S к приемнику P.

Прежде чем продолжить обсуждение возможностей выражения (1.60), приведем два простых примера.

Пример 1. Источник S и приемник P удаляются друг от друга по одной прямой в противоположные стороны относительно среды со скоростями u и u'. Частота источника ν, скорость сигналов в среде v. Найдем частоту v', воспринимаемую приемником.

В данном случае проекция скорости приемника на ось X есть u'х = u', а проекция скорости источника ux = -u. Подставив эти величины в формулу (1.60), получим

ν' = ν (v - u')/(v + u).

Пример 2. Источник S, испускающий сигналы с частотой ν, движется с постоянной скоростью us относительно приемника P, установленного на башне (рис.). При этом воздушная масса перемещается относительно земной поверхности вправо с постоянной скоростью u0 (ветер). Скорость звука в воздухе v. Найдем частоту v', воспринимаемую приемником.

Имея в виду, что в формулу входят скорости относительно среды, запишем: проекция скорости приемника u'х = – u0, а проекция скорости источника uх = usu0. Обе проекции взяты, как должно быть, на ось X, направленную вправо. Остается подставить эти проекции в формулу (1.60), и мы получим: